AD-A11% 020 TEXAS INSTRUMENTS INC DALLAS CENTRAL RESEARCH LABS F/6 5/9
INTELLIGENT TUTORING FOR PROGRAMMING TASKS: USING PLAN ANALYSIS—ETC(U)
MAR B2 J R MILLERs T P KEHLER» P R MICHAELIS NODM.“-BO-C-
UNCLASSIFIED TI-08-82-010 ONR-TR=82-0818F

-

. " - ek W Ao a R ey A kit ot B e e
e A 2tk A o M SR P “

B

ONR-TR-82-0818F

INTELLIGENT TUTORING FOR PROGRAMMING TASKS:

<::> USING PLAN ANALYSIS TO GENERATE BETTER HINTS
&
qu - Texas Instruments Incorporated
Central Research Laboratories
y=i{ 13500 North Central Expressway
Dallas, Texas 75265
| '
2 March 1982

Final Report for Period 30 September 1980 - 31 December 1981

13
Contract No. N00014-80-C-0818

Approved for public release; distribution unlimited.

Reproduction in whole or in part is permitted for any
purpose of the U. S. Government.

Research Sponsored by

Personnel and Training Research Programs

\ELECTE
Psychological Sciences Division n
Office of Naval Research R APR 30 1982
Under Contract No. N00014-80-C-0818, &

Contract Authority ldentification No.
NR 154-458

>
o
<
b
WY

(il
E

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whon Date Entered)

ONR-TR-82-0818F

2. GOVY ACCESSION NO.

b A/ 03

b

READ INSTRUCTIONS
REPORT DDCUMENTATlON PAGE BEFORE COMPL.ETING FOKRM
T REPORT NUMBER 3. RECIPIENT'S CATALOG NUMAE -

4 TITLE (end Subtitle)
Intelligent Tutoring for Programming Tasks:

Using Plan Analysis to Generate Better Hints

5. YYPE OF REPORT & PEROS 7 ,ECE"

Final Report
30 Sept 1982-31 Dec 1981

6. PERFORMING ORG. REPCRAT NuUMBER

08-82-010

7?7 AUTHOR(e)

J. R. Milier, T. P. Kehler, P. R. Michaelis, and
wa R. Murray

9. CONTRACTY OR GRANT NUMBER's,

NO0O14-80-C-~0818

[T PERFORMING ORGANIZATION NAME AND ADODRESS
Texas Instruments Incorporated

?entra1 Research Laboratories
3500 N. Central Expressway

. PROGRAM EL EM
AREA & WORK UNIT NUMBE RS

ENT. PROJEC™ Tasey

800 North Quincy Street
Arlington, VA 22217

Dallas, T 65 ,
"office of Naval Research oot " March 1985

13. NUMBER OF PAGES
103

T4 MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office)

18. SECURITY CLASS. rof this repory,

UNCLASSIFIED

182, DECLASSIFICATION DOWNGRATZING
SCHEDULE

16 DISTRIBUTION STATEMENT (af this Report)

Approved for public release, distribution unlimited

7 DISTRIBUTION STATEMENT (of the shstract enteared in Block 20, if different from Report)

18 SUPPLEMENTARY NOTES

Computer-aided instruction
Artificial intelligence
Tutorial systems

Computer programming
Cognitive psychology

'9 X EY WORDS (Continue on reverse eide i/ necesaary and ldentily by block numbes)

A

program and ways he can correct these errors.

errors in this plan, ——»

20 ABSTRACT (Continue on reveras side I{ necessary and identily by block number)

- 7 This project has dealt with tutorial systems for computer programming
languages, particularly, systems in which a student is trying to write a
computer program and can, upon request, receive hints about errors in his
This research had two phases:
an experimental investigation of the interaction between a student and a
hint-giving tutor, and the construction of a tutorial system that identifies
the plan underlying a student's program and gives hints that address

DD ,

a L) —— 1

onMa 1473

JAN 73 EDITION OF ! NOV 6318 OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS BAGE (When Dara Fate: -

- "
e ann e asniisn AR . .,

UNCLASSIFIED

SECURITY CLASSIFICATION OF TNIS PAGE(When Dale Entered)

. -~7In the experimental work, an existing programming language tutor (BIP)
was modified to allow students to request and receive hints from a human
tutor. \The protocols generated during the experimental sessions were
analyzed\ by a taxonomic system that described the events that took place

at a sufficiently general level to allow comparison of sessions across
different subjects or different programming tasks. The actions of the
student/, the tutor, and the tutorial system itself were classified.

Q%hese exper1ments suggested that

13 r——

Proqrams are typ1ca11v wr1tten in two stages: -(%7/ﬁayout of the

basic deSIgn of the program and {2) correction of the statements that
1nstant1ate this design. <

(

)\

LI Systems that rely on "canned" hints do not provide adequate
assistance for the complex problems faced by students. Although BIP was
able to give reasonable help on the syntactic form of language statements,
it has no facilities for 1dent1fy1ng and offering advice on problems with
a program s design; in these experiments, students recognized this short-

coming and relied upon assistance from the human tutors. “f?

The simple syntactic help offered by BIP and similar systems needs
to be augmented by more powerful techniques that can understand the plan
under1y1ng a student's program and offer advice that corresponds to errors
in this plan. Our development of TURTLE, a tutor for the “"turtle graphics"
component of the LOGO programming 1anguage, is one step toward this goal.
TURTLE uses artificial 1nte]11gence techniques to identify and offer help on
student plans, thereby gaining the ability to diagnose the design of a
student's program as well as its code.

TURTLE identifies student plans by working within the limited domain
of turtle graphics and by having access to very detailed representations
of the problems posed to students. As a result, it can generate the entire
set of plausible solutions for a problem. Identifying a student's plan is
then reduced to the much simpler matter of matching the student's
program to a relatively small set of possible solutions and adopting the
the plan that corresponds to the solution offering the best match.
Students are encouraged to decompose a more complex problem into a
set of smaller problems, each of which is solved by a separate function.
By limiting the size of these functions, the combinatorics of solution
generation are kept under control, although at the cost of requiring
TURTLE to determine how a student has decomposed a problem. This
determination is achieved in much the same way as the identification 3
of a simple program's plan: by comparing the student's decomposition to '
a known set of possible and plausible decompositions.

Differences between the student's proposed solution and the correct ’
solution -- missing or unnecessary statements, or necessary statements
with incorrect arguments -- guide TURTLE's hint-generation component.
Since the student's plan is known, the functions of the incorrect or
missing statements are also known, and hints can be given that reflect ﬂ
errors in the design and the code of the student's program.- The individu-

alized and specific attention required and requested by students is 1
thereby made possible.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

iia

Table of Contents

1 Introduction 2
2 OGOL: A Graphics-Oriented Language for Tutorial Systems 11
2.1 Task Definition and Language Construction 11
2.2 An OGOL Tutorial System 12
2.3 Evaluation 16
3 BIP/HINT: Experiments with a Tutor with Human-Generated
Hints 18
3.1 The Tutorial System 18
3.2 Experimentation and Protocol Analysis Taxonomy 22
3.3 Taxonomic Analysis of the BIP Sessions 31
3.3.1 Statement Composition and Debugging 31
3.3.2 Students” Requests for Assistance 32
3.3.3 Problem Difficulty 35
3.3.4 Evalu:tion of the Taxonomic System 38
3.4 Detailed Analysis of a BIP Session 39
3.4.1 Problems with BASIC 42
3.4.2 Problems with BIP 43
3.4.3 Problems with the Tutor 44 *
3.4.4 Problems with the "Hint Button" Approach 48
3.5 Advantages of a Human Tutor 51
4 Program Understanding and Synthesis in LOGO: The TURTLE
Tutor 54
4.1 Sample TURTLE Sessions for the TRIANGLE and WELL 55
Tasks.
4,1.1 TRIANGLE: Interpreting Oven Coded Solutions 57 .
4.1.2 WELL: Decomposing a Complex Fiqure 61 F |
4,2 TURTLE: Plan Understanding via Analysis by 65
Synthesis
4.2.1 Curriculum Structure 66
4.2.2 Task Representation 67
4.2.3 Program Synthesis 72
4.2.4 Program Recognition 74
4.2.5 Program Decomposition 77 i
4,2.6 Spvecifying Setup Orientations and 81
Interfiqure Interfaces
4,2.7 Program Annotation and Hint Generation 87
4.3 Areas of Future Develoopment 94
5 Summarv 97
References ' 101 1
Anpendix I: TURTLE’s implementation 103
Accession For ’
NTIS GRAXI
DTIC TAB %
Unannounced O
Justification . _ |
Q3
By N::;»
_p;pp?;pution/““'&_r ‘ ®
Availability Codes
7 lavail and/or

Dist Special

Foreword

This is the final report for ONR Contract No.
N00014-80-C-0818, "Intelligent Automated Tutors for Instruction
in Planning and Computer Programming®”. The contract monitor for
this research was Marshall J. Farr, Mark L. Miller was principal
investigator from October 1980 to September 1981, when he left
Texas Instruments. Direction for the research was then

transferred to Thomas P. Kehler and James R, Miller.

e

M. Miller was responsible for the contract proposal and the
initial orientation of the research. OGOL (Section 2) was
designed by M. Miller and William Murray, and implemented by

A
Murrav. The BIP/HINT system (Section 3) was implemented (via
modifications and extensions to the original BIP code) by Patrick
Duff, Murray, and John L. Shelton. The BIP experiments were run
bV,R??l R. Michaelis, Murray, Hendler, and Duff. The taxonomic
analysis ofaéhe exper iments (Section 3) was done by J. Miller,
Michaelis, James Hendler, and Duff. Murray designed and
implemented TURTLE (Section 4). The final revort was coordinated

by J. Miller, with contributions from Kehler, Michealis, and

Murray (Section 4).

Section 1
Introduction

Recent advances in computer technology have greatly expanded
the power and flexibility of computer-aided instruction (CAI)
systems. While such systems have existed for many years, the
development of artificial intelligence technology has allowed
these systems to hecome increasingly specialized in their control
of the educational process and their interaction with students.
As a result, these tutors offer a far wider range of diagnostic
and tutorial powers than is available in tutoring systems built
with traditional computer technology. A general discussion of
intelligent computer-aided instruction systems (ICAI) can bhe
found in Clancey, Bennett, and Cohen (1981) and Sleeman énd Brown
(1981); the current discussion will be limited to CAI systems

that tutor students learning computer programming languages.

One of the first orogramming tutors was BIP (Basic
Instructional Program: Barr, Beard, & Atkinson, 1976). BIP offers
an environment in which a student can create and debug programs
written in the BASIC programming language. A student working
with this system is given a series of problems for which he must
write programs. He enters the statements of these programs
directlv into BIP, which checks the syntax of these statements
and advises the student of any errors. BIP also provides a set
of facilities that allow the student to list, run, erase, and

trace the execution of the programs.

For each of the oroblems given to a student, BIP has a set

T T
e -
Fl

RO 28 A 8

Ao v

e s

JR—.

of input-output pairs that describe certain pieces of data and
the output that should be produced for these data by the
student”s program. It also has a BASIC program that can generate
this output, given the data. The student can run this reference
program, enter his own data, and observe the reference program’s
treatment of these data. When the student has refined his own
program to the point where he believes it is correct, he can
submit it to BIP for evaluation: BIP runs the student”s program
with the data in its inobut-output pairs and compares the output
of the student”s program to the output that should be produced by
these data. The student is informed of anv errors in this output
and can use the facilities of BIP to debug his program until its

output is correct.

BIP has several facilities for offering help to a student
Auring the tutoring session. The student can request a general
description of the current problem, which summarizes the general
design of the orogram and the kinds of statements that are
necessarv to solve the problem. The student can also ask for a
"hint," which is usually a more detailed description of a
varticularly difficult part of this problem. All these
descriotions are determined by the instructor who defines the BIP
curriculum; BIP merely presents these to the student upon
request, Finally, whenever a student enters a statement or a
command that is Aiagnosed by BIP as being incorrect, he is
offered help on that statement or command. For example, if a
student entered an illegal IF statement as part of his progqram,
BIP would revort that the syntax of this statement was incorrect

and would offer further help. If the student requested this

D U

4
advice, he would receive a general description of the form of an
IF statement; further requests for help would obtain examples of
other incorrect IF statements and, finally, examples of correct

IF statements.

The level of assistance BIP can provide to a student is
limited. While BIP can offer help on the general form of a
particular statement after an incorrect instance of this
statement is entered, it can offer only indirect advice, via
i references to correct and flawed statements of the same type, on
: why that statement is incorrect and what must be done to correct
E it. Similarly, BIP can offer little help with statements that
E are syntactically correct but logically flawed. Although BIP is
more than a frame-based tutor, its assistance must be predefined
by the course”s authors and written in a general form to address
general problems that will presumably be of use to as many
students as possible. To go beyond these limitations, tutorial
systems must incorporate detailed knowledge about the actions the

program is intended to carry out, the nature of the programming

statements used to bhuild these programs, and high-level knowledge
structures that describe the design of a complex program; i.e.,

the decomposition of a large problem into an organized collection
of smaller, manageable problems. As will bhe discussed later, %
artificial intelligence techniques offer an appropriate set of

tools for this task.

Another feature of BIP that might be improved by artificial]
intelligent techniques is the selection of the problems that are

presented to students, BIP teaches BASIC by requiring the

student to write programs that accomplish increasingly difficult
tasks. The complete system contains 91 tasks, although only
about 20 of these are ever presented to a single student. The
selection of these tasks depends upon BIP”s curriculum

information network: BIP contains, for each of the problems in

the network, a description of (a) the skills (statement types,
such as variable assignment, conditional, input/output, etc.) a
student must have to solve this problem, (b) the skills the
problem is intended to teach, and (c) the skills that are
considered irrelevant to the problem. BIP also bhuilds and
maintains a model of the student by noting the skills the student
has mastered as a result of completing the programming tasks
presented to him by BIP. When a student has successfully
completed a task (and thus presumably mastered the newly
introduced skills in that task), BIP adds the skills that were
taught hy this task to its model of the student, compares this
model to its curriculum network, and presents the student with a
task that presupposes a set of skills that is already possessed
by the student and that introduces or develops a skill that has

not been mastered by the student.

In this way, BIP can tailor its instruction to the progress
of individual students, presenting tasks that gradually advance
the student toward a complete understanding of BASIC. Note,
however, that BIP“s lack of knowledge structures that describe
the design-level components of a program (which prevents BIP from
offering students assistance at this level) also limits its
ability to bhuild a detailed and accurate student model: students

learning to program are learning software design as well as a

narticular programming language, and a sound tutorial system
should represent hoth of these aspects of the students”

expver ience.

These issues have been considered in more recent tutorial
systems that have taken advantage of insights from artificial
intelligence research. To provide personalized advice about the
design of a student”s program and ahout the actions carried out
by individual statements, it is necessary to examine the content
of the student”s partially correct program, to infer the plan
underlying this program, and to offer assistance to the student
that addresses the differences between this inferred plan and a

plan that describes a correct solution to the problem.

One svstem concerned with inferring student plans to this
end was Goldstein’s MYCROFT (1975)., a svstem designed to diagnose
fiqures drawn by "turtle graphics" programs written in Logo. A
student working with MYCROFT descrihes the figure he was trying
to draw in a "model lanquage™; a stick figure of a man might be
described as:

MODEL MAN ¥

M1 PARTS HEAD BODY ARMS LEGS

M2 EQUTRI HEAD

M3 LINE BODY

M4 V ARMS, V LEGS

M5 CONNECTED HEAD BODY, CONNECTED BODY ARMS,
CONNECTED BODY LEGS

M6 BELOW LEGS ARMS, BELOW ARMS HFAD

END

This description states that a MAN has a HEAD, BODY, ARMS, :
and LEGS as its PARTS (Ml). The tvpes of these figures are then
identified (e.g, the HEAD is an EQUTRI ~-- an equilateral triangle

[M2]), as are the connections hetween these parts (M5) and the

L

relative positions of the parts (Mé6). Some of these proverty

tyres were defined as system primitives (e.g., PARTS, LINE,
CONNECTED, BELOW) while other proverties could be defined by the

student: here, the student must define EQUTRI and V, in ways

similar to the definition of MAN.

MYCROFT could use this figure description to diagnose errors
in the student”s program in terms of high-level principles
underlying the design of the program, such as the failure to
reorient the "turtle" drawing device after drawing a portion of
the figure, or that an error existed in the statements that drew
the LEGS of the MAN. The rules that MYCROFT used to detect
programming errors were ad hoc, hut captured many of the common
flaws in program construction. In addition, MYCROFT was not fully

implemented,

Similar concerns for assisting students with the design of
their programs lay behind the development of SPADE (Miller, 1979;
Miller & Goldstein, 1977). SPADE guided a student through the
construction of a Logo program by providing a high-level
description of the design of the program that was progressively
refined by the student. SPADE used grammar-like structures to
represent possible design choices:

PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE

IDENTIFY -> PRIMITIVE | DEFINED
DECOMPOSE -> CONJUNCTION | REPETITION

PRIMITIVE -> VECTOR | ROTATION | PENSTATE
VECTOR -> {FORWARD | BACK} + <number>

A student using SPADE (and the design grammar shown here) is

presented with the decomrmosition of PLAN, indicating that a

program can be written by identifying primitive or previously

defined procedures that would accomplish the task, by decomposing

the problem into a set of simpler tasks, or by reformulating a

problem into a different problem for which a known plan exists.
After specifying the desired decomposition, The student continues
by selecting one of these decompositions for further work,
perhaps DECOMPOSE: by this, the student indicates that the
proqgram required a decomposition (although he can later return to
the PLAN level and work on the IDENTIFY or REFORMULATE steps,
should these bhe relevant). The student is then shown the
decomposition of the DECOMPOSE step and further decides whether
the required decomposition is one of CONJUNCTION or REPETITION.
As this process continues, the student ultimately reaches the
terminal points of the grammar, which specified explicit
programming language statements. The result of this attention to
the design component of programming is meant to convey basic
concepts of software design rather than the syntax of the

programming language.

A somewhat Aifferent approach to these issues was taken by
Gentner”“s FLOW tutor (Gentner, 1977; Gentner & Norman, 1977).
This system contained schematic structures that described a wide
variety of states that might be present during the construction
of a program, from individual keystrokes to complex design-level
structures, The system bhegan its control of a tutoring session by
locating the schema that matched the problem posed to a student
and expanding this schema into instances of lower-level schemata,
predicting individual statements and even keystrokes. The

correctness of a student”s progress toward a solution of the

oroblem could then be tracked by noting which schemata were
activated by the student”’s program. If the student proceeded
toward a correct solution of the problem, the schemata activated
by the student”s program would match those activated by the
tutor’s decomposition of the prohlem description., Alternative
correct solutions to a problem would be correctly interpreted by
the system, since a correct solution would satisfy the
constraints of high level schemata, even though the inJdividual
program statements would have activated an unexpected set of
program statement schemata. If the student”s program departed
'siqnificantly from a correct solution, the resulting errors would
activate other schemata that were designed to recognize these
errors, which would then trigger appropriate corrective actions.
It is important to note that these error-detecting schemata could
be constructed so as to describe and detect errors at any level
of complexity, from an assignment statement with unbalanced
parentheses to the incorrect initialization of a counter variable

in a complex iterative looo,.

The present research has focused on one of these oroblems --
how to give students specific, individualized assistance during
the construction of computer programs. We proposed to construct
a tutor that would teach students how to write programs that
oroduc? "turtle graphics" line drawings, and that would offer the
stud<nts hints ahout errors in their program. The proposed tutor
was intended to address not only syntactic errors in program
statements, hut also errors in the conceptual design of the

program. This research was intended to focus on one aspect of

the hint-giving probhlem: the construction and presentation of

10
relevant hints. We have postponed until a later time the second
aspect of this problem -~ determining when the tutor should
interrupt the student”’s work to offer a hint -- by requiring the

student to explicitly request hints from the tutorial system.

mhis research is presented in four sections. Pirst, a
programming lanquage for studying tutorial interactions and a
simple tutor for this lanquage are described., Second, a series
of experiments on a computer-based tutor with human~generated
hints is presented. Third, the tutoring system that was
implemented is described and demonstrated. Fourth, the research
is summariza2d and evaluated, and directions for future research

are considered,

et andatibag o

11

Section 2

OGOL: A Graphics-Oriented Language for Tutorial Systems

2.1 Task Definition and Language Construction

The first step in this project was to identify a programming
lanquage that would he particularly appropriate for the
development of a tutorial system. The primary candidates for
this langquage were Logo and Lisp. Logo-hased "turtle graphics"”
programs are easy to explain to students, can be made arbitrarily
complex, and result in a dArawing in which the correct and
incorrect marts of a program are quite apparent. In addition,
these drawings can be represented by networks of points and
vectors, a convenient data format for those marts of the tutorial
svstem that must analyze and evaluate student programs. However,
the limited power and generalitv of Logo”s iterative and
conditional branching statements would make the construction of
programs that require these statements inordinatelv difficult and
would limit the extension of a Logo-based tutorial system to
other lanquages in which more powerful control statements are
available. 1In contrast, Lisp offers a straigh:forward solution
to the extensihility prohlem; however, it lacks :he graphics
statements that made Logo so appealing and would impose upon the
student a set of function names and nrogramming structures that
are often difficult and confusing for those who are new to
programming or who are experienced with Fortran- or Pascal-like

langquages.

This dilemma was resolved bv developing a new language --

i

PRCK - W PR N T ¥

PP PN

12

OGOL (ONR Graphics Oriented Language) -- that merges the

desirable features of Logo and Lisp. 1In particular, OGOL allows
} the construction of turtle graphics programs in an environment
with all the extensibilitv and recursive power of Lisp and with
several features that correct some of the more complex and
difficult to learn aspects of Lisp: OGOL offers flexible list
construction facilities, pattern directed evaluation, and both

; call-by-name and call-by-value evaluation.

2.2 An OGOL Tutorial System

To evaluate the usefulness of this language, a simple
"turtle graphics" tutor was built around 0GOL. The Lisp-like
features of OGOL were not studied in this system. Rather, the

0OGOL tutor trains the student in the use of the basic turtle

garanhics commands. This tutor uses two terminals: a standard

terminal with which the student carries on the tutorial

interaction with the svstem, and a color qraphics terminal that
Aisplays the qraphics commands and programs run by the student or
the tutorial system. The graphics commands available in OGOL

are:

-ERASE: erase the screen and place the turtle in the
center of the screen.

-DRAW X: draw a line X stevps long.

-MOVE X: move the turtle forward X steps (without
Arawing a line).

~-TURN X: turn the turtle X deqrees clockwise.

This tutor is in many ways similar to BIP, Like BIP, the
0GOI, tutor uses a "curriculum information network"™ to expose a

student to the course material in an ordered way. The OGOL tutor

13
also has a facility for offering predetermined hints about the
tasks being presented to the student., The instructor who
assembles a particular version of the OGOL tutor can specify a
set of hints for each program in the curriculum, These hints can
refer to either the general design of the program being written
or to the code used in specific statements within the program.
Upon request, these hints will be shown one after another in the
order specified. The presentation of these hints is partially
affected by the student’s progress in the task: if the student
asks for hints before he has tried to enter a program that would
solve the current problem, he will receive the design-level hints
nrovided by the instructor. However, he cannot receive code
hints until he has made at least one attempt to define the

program.

A partial transcript of a student”s interaction with the
OGOL tutor is shown in Table 1., The session begins by presenting
some introductory information about computer programming in
general and turtle graphics programming in varticular, and by
allowing the student to experiment with the basic OGOL graphics
commands -- the student can issue graphics statements and observe
their result on the graphics terminal. In the transcript in Table
1, the student has completed this phase of the session and is
receiving instruction on how to generate a sequence of OGOL

statements that will draw a square.

The student is first told that he can draw a square by
outting the individual commands he previously used to draw a

square into a program definition statement (line 1). The tutor

el b o ok R

14
Table 1:
A sample tutorial session with the OGOL tutor.

Those lines entered by the student (such as line 15)
are headed by "#=»",

1 Let’s write a program to draw a square. You

2 already know how to Ao this by tvping in a sequence of

3 commands. Write a program named SQUARE that will perform

4 that sequence of commands when it is called. Make sure

5 that the heading of the turtle before and after calling

6 the SQUARE program is the same. This may require

7 another TURN command at the end of the sequence of

8 commands to draw the square. This final turn command

9 will make sure that the sum of all the rotations in the
10 SOUARE proqram is 360,
11 1
12 Welcome to OGOL!
13 Type (HELP) for help.

14

15 ** (hint)

16 '

17 If I wanted to define a program called FOO to have my

18 |- turtle draw forward 100 units, turn 135 degrees, then
19 draw 50 units, I would type the following:
20
21 (define [foo]
22 (draw 100)
23 (turn 135)
24 (draw 50))
25

26 Note that I can place the various parts of the program on \
27 different lines. When all the parentheses balance [that i
28 is when the number of left parentheses: (matches the §
29 number of right parentheses:)] and I have entered a f
30 return after the last line, then the proqgram is defined. ;
31

32 To call FOO, I need only type:

33 (FOO) .

34

35 ** (hint)

36

37 Sorrv, no more hints are available for designing a
38 solution to this task. However, I can give vou more
39 hints once vou DEFINE a program.
40 1
41 ** (define [square) 1
42 (draw 100) (draw 100) (draw 100) (draw 100)) ¥
43 SQUARE ; 3
44 ‘(
45 ** (hint)

46 I

Your progqram should call the same sequence of commands
you called before when vou drew 4 line segments at right
angles to each other, If you make an error, you can
always redefine your program and the new definition will
override the old definition. If your sequence of
commands turns the turtle 270 degrees, then adding (TURN
90) at the end of that sequence will restore the
original heading of the turtle,

** (define ([square] (draw 100) (turn 90)
(draw 100) (turn 90)
(draw 100) (turn 90)
(draw 100) (turn 90))
SQUARE

** (gquare)
[[OGOL draws a square on the graphics terminal]]
** (quit)

Here is one way to solve the task you have just
completed:

(define [square]
(draw 100)
(turn 90)
(draw 100)
(turn 90)
(draw 100)
(turn 90)
(draw 100)
(turn 90))

Note the last (Turn 90) is used to return the turtle to
its original heading.

See if vou can draw a triangle now, in a similar
fashion to the way you drew the square, using only DRAW
and TURN commands. The triangle should bhe equilateral
and have sides of length 100. It“s OK if the triangle
is tilted.

[session continues]

16
then places the student in the OGOL interpreter (line 12), where

he is to define the SQUARE function,

The student begins this phase of the session by requesting a
hint from the tutor (line 15), which provides a hint about the
design of the DEFINE statement: he is shown how to define a
function that draws an arbitrary line segment (line 21). The
student requests another hint (line 35), but since the student
has not vet tried to define the SQUARE function, and since only
one design hint was included in the system by the instructor, he
is told that no more hints will be available until he has tried

to define the function (line 37).

At this point, the student (incorrectly) defines SQUARE
(line 41). His subhsequent request for a hint is answered (line
47) with a reference to the series of commands he had entered

earlier. He then (correctly) redefines SQUARE, (line 56) and runs

the function (line 62), which draws an accentahle square on the

qgravhics terminal. Having completed the function, he leaves the
OGOL tutor (line 66) and returns to the tutor, which shows him a
valid function for SQUARE (line 71). The session then continues,
with the student now requested to define a function to draw a

triangle (line 94).

2.3 Evaluation

As stated earlier, the OGOL tutor is quite vorimitive. All
hints are prespecified by a human instructor, and its curriculum
network was never developed to the extent of the corresponding
network in BIP. Further, this system was never extended toward

hecoming a trulv intelligent tutorial system, nor even toward

17
acquiring the full capabilities of a BIP-like system. As a
result of some preliminary experiments with OGOL, it became clear

that the hasic turtle graphics domain itself -- without OGOL“s

expanded facilities for subroutine parameter passing and flow of

control -- was sufficiently complex for the purposes of the
contract. Hence, the development of the OGOL tutor was suspended
in favor of developing a turtle graphics system capable of

identifving the student”s plan and generating intelligent hints

ahout that plan,

18

Section 3

BIP/HINT: Experiments with a Tutor with Human-Generated Hints

3.1 The Tutorial System

An important part of this study of intelligent tutorial
systems has heen to studvy how human tutors interact with their
students. Good tutors can build sound models of their students”
knowledge and problem solving strategies and can interact with
the student in ways that address and correct the dAifficulties he
faced, 1Identifving the strategies that good human tutors use to
these ends is the first step in the construction of tutorial

svstems with similar capabilities,

To this end -- understanding the relative strengths and
weaknesses of human and computer tutors -- experiments were
carried out with a modified version of BIP (Barr, et al., 1975).
These modifications allowed a student in a tutoring session to

request a hint from a human tutor. 1In this modified version of

BIP (here called BIP/HINT) the student and the tutor were located
in separate rooms, each equipped with two terminals (see Fiqure
1). The student used one of the terminals to interact with
BIP/HINT; hoth sides of this interaction also appeared on one of .
the tutor”s terminals. At any time durina the session the
student could request a hint from the human tutor by pressing the
touch nanel mounted on his second terminal. The tutor entered
this hint on his second terminal, which then avpeared on the
student”s second terminal. This procedure was intended to #

simulate a tutorial system with a "hint button®™: in these

19
experiments, the student had to request a hint (the tutor could
not interrupt the student”“s session and offer a hint), and the
student could communicate with the tutor only by pressing the 1

touch panel (the student could not send a question to the tutor).

Some other modifications were made to make BIP more suitable

for the current purposes: !

* Session recordings. A student”s interactions with BIP/HINT

and with his tutor were saved in disk files for later analvsis,]

* Restricted set of tasks. Only seven of BIP”s original

tasks were used in these experiments:

~GREENFLAG: an introduction to the use of BIP and the
format of BASIC statements, and the quided construction
and execution of a BASIC proqram that assiqgns an
integer value to a variahle and then prints the value
of that integer.

~ARTICHOKE: assign the string "ARTICHOKE"” to a string
variable, assign the value of that variable to a second
variable, and print the second variable.

~SINOP: get two strings from the student with two
separate INPUT statements and print them on the same
line,.

~-NINOP: get two numbers from the student and print their
sum, difference, product, and quotient.

-TWOS: use a FOR loop to generate and print the even
numbers from 2 to some number specified by the student.

~NGREAT: get two numbers from the student and print them
in the prover order in the form, "<number> is qgreater
than <number>".

~CALCULATOR: qget an arithmetic overation from the
student (1="add," 2="subtract,” etc.) and apply this i
operation to two numbers that are then entered by the

student.

Some minor changes were made in these tasks to simplify the

wordings of the problems and to remove a few ambiguities.

STUDENT

TERMINAL 1 TERMINAL
/N ﬂ\
normal hint
BIP an
session displs-
B I P / H 1 T
f hint
stgggztgs requast
BIP anc
session display
)\ V2
TERMINARL 1t TERMINARL 2

TUTOR

Figure 1 A Schematic Descripiion of the Experimental 21

System

v
anm nt aBOn m ers tam t aras msi - rrma?

PN

ST T T TR ey TV Teee W

r"

e e o —— . b et omporeirrs o — . —

21

* Restricted set of BIP commands and BASIC statements.

Students working with BIP can he shown the names of the legqal BIP
commands and BASIC statements by using the commands "?BIP" and
"?BASIC", respectively. Both commands produce large amounts of
information, and some students complained about being unable to
find a command or statement in these lists. Because of this and
the restricted set of tasks used in BIP/HINT, some of the
commands and statements were removed from BIP/HINT”s response to
the "?" queries, although the parts of BIP responsible for
interpreting the disabled commands and statements remained
intact, so that these statements would be interpreted properly if
they were entered. The commands and statements available in

RIP/HINT were then as follows:

Available BIP commands: CALC, DEMC, LIST, MORE, RUN, SCR,

WHAT, WHO, WHY

Hidden BIP commands: DEMO-TRACE, FLOW, HINT, KILL, MORE,

BYE

Availahle BASIC statements: DATA, END, FOR, GOTO, IF,

INPUT, LET, NEXT, PRINT, READ, REM, STOP.

Hidden BASIC statements: RBEGINSUB, DIM, ENDSUB, GOSUB,

REOPEN, RETURN

* Revised student manual. The BIP student manual was revised

to make it easier to locate Aesired narts of the manual and to
remove those parts of the manual that referred to BIP commands
that were not available in BRIP/HINT. This revised manual

included selected sections of the original BIP manual and new

22
one-page summaries of the most common BIP commands and BASIC
statements. These summaries contained brief descriptions of the
command or statement and the page number of the manual where a
more detailed description could be found. This revised manual
covered all the legal BASIC statements, but was only 37 pages

long (versus the 61 pages of the original manual).

3.2 Experimentation and Protocol Analysis Taxonomy

The experimental sessions were conducted to study the
conditions under which students requested assistance from the
human tutor or from the tutoring system, the nature of these
hints and the tutoring experience in general, and the ability of
the student to apply these hints toward the construction of a
correct pnrogram. There are important differences between BASIC
and LOGO, hut our analyses of these protocols are not concerned
with the lanquage-devendent aspects of the tutoring sessions.
Rather, they are focused on the cognitive aspects of tutoring,
especially those related to the circumstances surrounding hint
requests and hint generation. It should also be noted that these
experiments should not be regarded as an evaluation of BIP. The
version of BIP used in these experiments was severely limited in
comparison to the actual system -- in particular, BIP”s own hint
facility was hidden from the students., The intent was only to
ohserve the nature of the interaction between a student and a

tutor.

Eight subjects, none of whom had any prior experience with

computer oroqramming, took part in a series of sessions with

BIP/HINT. Due to porohlems with the computer system (e.qg.,

|
|

BIP/HINT crashes during a tutorial session), we have usable
protocols from three of these subjects. All subjects
successfully completed the first five tasks: GREENFLAG,

ARTICHOKE, SINOP, NINOP, and TWOS.

Because the protocols are verv lona, it was necessary to
condense them into a form more amenable to analysis. A taxonomy
was therefore devised to describe the interactions hy the

student, the tutor, and BIP/HINT in these protocols (Table 2).

The taxonomy contains three major classifications,
corresnonding to whether the protocol segment being encoded was
produced by the student, by the human tutor, or by the tutorial
system. A student mav Ao a variety of things to program
statements: he mav try to enter a line in the reference program
for the first time, reenter that statement until a svntactically
legal BASIC statement has heen entered, change that legal
statement further, or delete the a statement altogether. He may
also enter various BIP commands or request help from either the
tutor (by pressing the touch panel) or the tutorial svstem (in
response to an offer of help, as described helow). The student
mav also respond to one of a number of questions from BIP,.

1
Our tutors” statements fell into two categories: offers of

future help and hints of various kinds. We identified four major
classes of hints:

-code: hints that included exampnles of executable BASIC
statements.

1
Several people served as tutors in these exveriments.

23

-~

Table 2:

Taxonomy for the analysis of BIP protocols

student
enters
command <hame <arqs>>
data
statement:
line <BIP-line#>
reenters
statement:
line <BIP-line#>
changes
statement:
. line <BIP-line#>
deletes
statement:
line <BIP-line#>
evaluates
program:
ok: [incorrect}
wrong: iincorrect
answers BIP query <with response>
asks for
system
{no} help
tutor
hint

tutor
gives hint:
code:
{ok | error | continue}l,
line <BIP-line#>
design: '
{ok | error | continuel,
line <BIP-line#>
overation:
{ok | error | continuel
general:
{ok | error | continue}
offers

future help

25

accepts
command <nhame>»
modification: line <BIP-line#>
statement: line <BIP-line#>
asks for operation instructions
describes execution:
fails: line <BIP-line>, error <BlP-error>
inout error

runs
ok
wrong
gives hint
code:
line <BIP-line#>,
continue
error
ok
design:
line <BRIP-line$>,
continue
error
ok
operation:
continue
error
ok
general:
continue
error
ok
offers
help:
line <BIP-line#>
overation
no help
problem description
rejects

command: <name <args>>
has a line number
issued at wrong time
incomplete command
other error
statement: line <RIP-line#>,
has no line number
incomplete-statement
other error
syntax error: <BIP-error>
terminates task

Lot ial

26

-design: general hints about the design of the program,
or hints that suggested the use of particular BASIC
statements, but that did not show an executable
statement. Hence, the hint, "Use a PRINT statement to
output the value of X" would be scored as a design
hint, while "Use the statement “PRINT X° to output the
value of X" would he scored as a code hint.

-operation: hints about the operation of BIP (e.g., "Use
the LIST command to look at your program.”).

-general: hints that referred to general aspects of
computer proqramming (e.g., "The computer can only do
exactly what vou tell it to do.")

In addition, the scoring of the hint noted the line of the

reference program with which the hint was concerned, and whether,

through this hint, the tutor was telling the student that an

error had been made, that the relevant part of the program was

correct (ok), or that the student should simply continue working.

The parts of the protocol generated by the tutorial system
were scored in similar ways. The system®s acceptance or
rejection of the BASIC statements and BIP commands entered by a
student were scored appropriately. BIP could also offer help
after a statement or command error, ask the student for certain
oneration instructions, and describe the execution of the
student”s program. These diagnostic messages and prohlem
descriptions typically contained suggestions abhout how the
program should he constructed, and so were scored the same wavy as

were tutor hints,

This taxonomic system converts the near-natural language of
the tutorial session into a more limited form, which offers

several advantages now and others that might be explored in the

future. The use of this taxonomvy has allowed us to automate much

POV T SR

[N PR P e Y

PRI

g —

a1 O i A . 0 A - b e it - s ko bt - . uie , ___ﬁ
gt v s it

of the descriptive analysis of these protocols, and it serves as

a common langquage through which we can compare the performance of

all the subjects on a common task, or evaluate the progress of

individual subjects on successive tasks. A sample protocol and

its taxonomic analysis are shown in Table 3. Statements from BIP

are in upper case, responses from the student are in lower case; {
the taxonomic analyses of the statements follow exclamation §§

points, and the tutor”’s hints are underlined.

The session shown in this protocol began with an offer by .
BIP to print a description of the current task (lines 1-2); this .
was coded as "system offers problem description" (line 3). By
responding "yes" (line 5), the "student answers [a] BIP query."
This description of the problem contained several hints of
different kinds. PFirst, the student was shown two explicit
examples of how variables can be assigned the values of string
constants or other string variahles (lines 9 and 15). Since
these "system hints" contained instances of executable BASIC
code, thev were further classified as code hints about specific
lines of BIP”s reference program for this problem.2 The student
also received other, more abhstract hints about the design of this
varticular program; these (lines 19, 23, and 26) were textual

descrintions of what each line of this program should do, and

2

The BIP tasks we have studied have been simple enough that our
students” programs rarely differed in any substantial ways from
these reference programs. AsS a result, we were able to use BIP’s
reference program as a standard against which the students” ,
programs were scored: the program statements entered by students i
were encoded in terms of the correspvonding statement in BIP’s
reference program. This use of a standard reference program
would probably not be satisfactory with more complex programs.

28
Table 3:

A sample application of the taxonomy to a BIP protocol,
BIP“s exchanges are in upper case, the student”s responses
are in lower case, the tutor”’s hints are underlined, and
the taxonomic statements are to the right of an exclamation

e

e,

=
O ODINAN B WN -

point.

YOU ARE IN TASK ARTICHOKE.
DO YOU WANT THE TEXT PRINTED OUT? TYPE Y OR N.
! (system offers problem
! description)
>y

! (student answers BIP query: v)

YOU CAN ASSIGN A LITERAL VALUE TO A VARIABLE LIKE THIS:
10 TS = "TELEPHONE"
1 (system gives hint:
! code: line 10)

YOU CAN ALSO ASSIGN THE VALUE OF A VARIABLE TO ANOTHER
VARIABLE, LIKE THIS:
10 8§ = T8
! (svystem gives hint:
! code: line 20)

WRITE A PROGRAM THAT FIRST ASSIGNS THE VALUE "ARTICHOKE"
TO THE STRING VARIABLE AS.
! (system gives hint:
{ design: line 10)
THEN HAVE IT ASSIGN THE VALUE OF AS TO ANOTHER VARIABLE BS
! (svstem gives hint:
! design: line 20)
AND THEN PRINT THE VALUE OF BS.
! (svystem gives hint:
! design: line 30)

*10 "artichoke" a$="artichoke
! (student enters statement:
! line 10)

SYNTAX ERROR: UNMATCHED QUOTE MARKS
! (system rejects statement:
! line 10:
! syntax_error)

LINE NOT ACCEPTED. (TYPE ? FOR HELP)
! (system offers help)

*10 artichoke ! (student re-enters statement:
! line 10)

! (student requests hint)

From TUTOR: you“re doing it backwards!

! (tutor gives hint:

29
48 ! design, line 10)
49 Trv tvping the line in this format:
50
51 10 TS = "TELEPHONE"
52 - = ! (tutor gives hint:
53 | code, line 10)
54
55 10 a$ ="artichoke
56 ! (student re-enters statement:
57 ! line 10)
58 -
59 SYNTAX ERROR: UNMATCHED QUOTE MARKS
60 ! (system rejects statement:
61 ! line 10,
62 ! syntax_error)
63 LINE NOT ACCEPTED. (TYPE ? FOR HELP)
64 ! (svystem offers help)
65 *what .
66 ! (student enters command)
67
68 YOU ARE IN TASK ARTICHOKE.
69 DO YOU WANT THE TEXT PRINTED OUT? TYPE Y OR N.
70 ! (system offers problem
71 ! description)
72 >v
73 ! (student requests svstem help)

[protocol continues]

30

were scored as design hints.

In response to these hints, the student tried to enter the
first line of the program (line 30), which was scored (line 31)
as the entry of line 10 of BIP”“s reference program. The syntax
error in this line was scored in BIP”s response to the student”s
input (line 34). BIP then offered help (line 38), which the
student dAid not request. Instead, she made another attempt at
the statement (line 41), which was &qain flawed by a syntax
error. Before actually entering this line into BIP, however, she
requested a hint from the tutor (line 44) by pressing the touch

panel.

In this interaction with the student, the tutor provided two
hints of differing specificitv: a design hint about the
assignment statement (line 46) and a code hint about the correct
form of the assignment statement (line 51). The student then
tried to enter the correct line (line 55), but made another
syntax error. The student again rejected BIP”s offer of help
(line 63), and entered the command that will print the
description of the task (WHAT: line 65). As the protocol ended,
she asked to see the task description again (line 72), in which
she received the design and code hints that she received in the
first presentation of the problem description (lines 8-28), and

continued to work on the prohlem.,

This analysis provided the ability to describe a tutorial
session at an ahstract, but still informative, level. The
student”s problems were centered around the assignment statement

in line 10, having entered attempts at the statement three times

r—'—_—_ﬂ—_—-'-. - §

and having received code and design hints about the statement
from two different sources. More importantly, the ahstract form
? of this analysis allowed us to evaluate the performance of

i multiole subjects on these prohlems, and it is to these kinds of

analvses we should now turn.

; 3.3 Taxonomic Analysis of the BIP Sessions

r Even with the limited amount of data we considered, the
taxonomic analysis of these protocols revealed several
interesting trends., Perhaps the most informative analyses were
those in which the tutorial sessions were divided in half,3 and
separate analyses were carried out on each half., In this way, we
could observe changes in the performance of the student, the

system, or the tutor as the student gradually approached a

correct solution.

3.3.1 Statement Composition and Debugging

With the analysis of these protocols it was vossible to

address the way students construct a program, Recall that our
classifications of statement entrv and reentry corresoond to the
initial attempts to enter a syntactically legal statement; any
modifications to a legal statement are then scored as changes.
The mean fregquencies of these classes of events for our subjects
in the first and second halves of the protocols are shown in
Table 4. These data suggest two major nrocesses in our subjects”
solution of these nrohlems: statement composition -- in which a

rough approximation to the proqram is constructed -- and

3
On the basis of the number of lines of text in the vrotocol

statement debugging -- in which the nearly correct components of

32

the proposed solution are corrected and refined.

These processes take place neither strictly sequentially nor
strictlvy simultaneously. Statement composition appears to take
nlace primarily in the first part of the solution; our students
made somewhat more enters and reenters in the first half of the
nrotocol. 1In contrast, statement debugging was concentrated in
the second half of the solution: more than twice as many
statements were changed in the second half than in the first.
Subjects seem to have first made a general vpass over the problem,
generating a statement (that is not necessarily correct) for each
part of the probhlem, and then gradually refining these statements
into their correct forms. This is similar to Atwood and
Jeffries’s (1980) finding that people approach complex software
design tasks by first huilding, in a breadth-first manner, an
anproximation to a complete solution, and then refining in a
depth-first way those components of the solution that are in

error.

3.3.2 Students” Requests for Assistance

Students in these sessions could get assistance from either
the human tutor (by pressing the touch panel and requesting a
hint) or by asking BIP for help (the diagnosis of an incorrect
statement could, if the student wished, bhe followed bv
descriotions of the correct and incorrect forms of those
statements). Table 5 shows the mean frequencies of subhjects”

reguests for assistance from either the human tutor or BIP itself

Auring the first and second halves of the tutorial session.

Wmm o

33

Table 4:

Mean frequencies of statement entries and reentries
Vs statement changes in the first and second halves
of protocols.

entries
and changes
reentries
first half 4.8 3.0
second half 2.4 6.2

34

Table 5:

Mean requests for assistance from the human tutor and
the tutorial system in the first and second
halves of protocols.

tutor system
first half 1.5 0.8
second half 2.1

[o

35

These data show that subjects strongly preferred assistance
from the human tutor, varticularlv in the second half of the
session, where, as found in the first analysis, subjects were
debugging their initial rough approximation to their program.
Together, these analvses indicate that our subjects were willing
to acceot BIP”“s help when they were laying out the initial plan
for the program, hut that they generally relind on the human
tutor for assistance when debugging their vprograms. These
preferences corresnond to the different kinds of help that are
availabhle from these two sources: BIP”“s system help is good for
general comments ahout the structure of program statements and
the basic design that the program should take, while the human
tutor is most valuable when the student has entered a statement
that is an incorrect, but syntactically legal, piece of BASIC
code. The human tutor can identify the student®s problem and

gquide the student toward a correct solution.

These data illustrate a further point about our students”
use of the svstem and tutor help facilities -- they were
extremely hesitant to take advantage of them. Requests for
system help were verv rare (especially so when it is remembered
that BIP offers this help after everv input error made by the
student); requests for tutor hints were more common, but still
infrequent. The implications of this finding on the design of

intelligent tutors will be dAiscussed later.

3.3.3 Problem Difficulty

Differences in the nature and level of help available from

the tutors and from BIP can also he seen in Table 6, which shows

e]

36
the number of times that students requested help from either the
tutor or from BIP in each of the four tasks. These data indicate
that students preferred help from the tutor at two particular
times: when thevy were just bheginning to use the system, and when

they were working on the hardest of the four problems.

Subjects need especially flexible and individualized
assistance at hoth of these times. When working on the first
problem, subjects needed help on their use of the BIP system
itself, particularly which commands should be used at which
times. Although BIP contains thorough descriptions of its
commands that could be offered when a student incorrectly used
the command, it is unable to infer from a student”s performance
which of these commands might he appropriate at a given time;
therefore, its help facilities are of little use at this point.
Further, since heln is availahle in this system only after an
error has been made, a student may have no choice hut to ask the

tutor for help in what might be done next.

The final and most dAifficult problem studied (TWOS) requires
the use of the BASIC iteration statement (FOR). To solve this
problem correctly, the student must understand the use of
iteration in the design of the brogram: the ability to write the
statement undergoing the iteration is assumed, and the skill

beina learned is how to embed one conceptual part of a program

37

Table 6:

Mean requests for assistance from the human tutor and
the tutorial system for the four completed nrohlems.

U
ty
3

tutor system
ARTICHOKE 2.0 0.0
".
SINOP 2.7 2,3
NINOP 2.0 2.3
TWOS 8.7 .7

[Note: these data are ranked by the difficulty of the

problems; ARTICHOKE was the easiest of the four; TWOS was the

hWardest.)

B

LM

ey

2

38
4

within another. We suspect that our students used BIP“s helo
facilities on the simple problems bhecause the level of help that
BIP can offer during these problems matches the level that is
needed -~ advice on the format of simple input/outnut and
assignment statements., However, to effectivelv advise a student
on a program containing iteration, the tutor must understand the
proper relation hetween the iteration statement and the iterated
statement, as well as the student”s (possiblyv flawed)
understanding of this relation. This detailed understanding of a

conceivably large set of program statements is beyond the scope

of a system like BIP.

3.3.4 Evaluation of the Taxonomic System

As an experiment to determine whether such a taxonomic
svstem might he useful in the study of tutoring protocols, the
vresent analyses were quite promising. However, further research
involving more subjects and tasks is needed to refine this
technique. One Adirection in which future research should qgo is
toward the generation of the protocol analysis by the tutorial
svstem itself: when a student entered a statement, the system
could easily enter the taxonomic statement "student enters

statement"” into its recording of the tutorial session; the

3

A strong causal statement regarding why students stop
requesting hints on hard problems cannot he made from these data,
since the difficulty of the problems received hy a student is
confounded with number of problems that a student has solved.
While we helieve that the "canned" hints like those offered by
BIP are initially useful, but hecome less useful as the prohlems
become more complex, it may also he that canned hints are never
really useful to the students, but that the students must work
with BIP for some time before thevy realize this,

39
system”s acceptance or rejection and diagnosis of that statement
could similarly be noted. However, some decisions cannot he made
as easilv as these simple notations of syntax errors: if a
student entered a poorly constructed IF statement during the
composition of a program that contained two IF statements, it
would probabhly difficult to determine which of the two the
student was tryving to write. At this point the taxonomic
analysis of protocols would hegin to change from a simple
transcriotion of the "surface structure” of a program into a more
conceptual analysis of the student”s plan that underlies the
denerated program ~- exactly the kind of analysis that is needed
in an "intelligent™ tutor. It is unclear at this time whether a
taxonomic system like that used here might also serve as an
abhstract descripntive language that could be exploited by the plan
identification component of an intelligent tutoring system (cf.
Miller & Goldstein, 1977), but this possibility mav be worth

exploring.

3.4 Detailed Analysis of a BIP Session

Although much can be learned from the taxonomic analyses
described above, a more detailed understanding of the tutorial
interaction still requires analysis of the original protocols.
One of our subjects -- referred to as DD -~ found the programming
tasks particularly difficult, and was the focus of such an
analysis, Her protocol offers offers a particularly rich source

of data on the interaction hetween a tutor and a student.

DD correctly completed the GREENFLAG, ARTICROKE, SINOP, and

NINOP tasks, and, in Aoinag so, demonstrated knowledge of the

statement for the construction of iterative loops.

following asvects of programming in BASIC:

-Numerical and string constants

-Assignment of a string or numerical constant to a
variable (i.e., A=5 or A="ARTICHOKE")

-Assignment of a variable”s value to another variable
(i.e., A=B)

-INPUT and PRINT statements

40

DD then moved on to the TWOS task, which is described hy BIP

as follows:

Write a program that counts by twos, up to a number given
by the user. For example, if they gave 8, your program
would print:

2

4

6

8

Use a FOR . . NEXT loop for this problem.

This problem can bhe solved by the following BASIC program:

1 REM N IS: THE NUMBER TO COUNT UP TO
10 PRINT "HOW HIGH SHOULD I COUNT?"

20 INPUT N

30 FOR I = 2 TO N STEP 2

40 PRINT I

50 NEXT I

99 END

The new skill introduced in this task is the use of the FOR

selected bv BIP“s curriculum information network hecause DD had
successfullv completed tasks that required using inout/output
statements, the only other statements needed to solve this

problem.

This task was

DD worked on this task for almost two hours, bhut never wrote

a completelv successful program. Her nearly complete orogram

41
failed in a way that caused a fatal error condition in BIP which
terminated the session.5 The analysis of DD’s protocol revealed {

f some serious confusions about BASIC and computer programming in

L general:

* She was confused about variable assignment. Her protocol

suggests that she initially thought that the INPUT statement

,,,
s A

should be used to assign values to variables (i.e., "INPUT X 8"
{ means "set X to 8"), and that she did not really understand that k
using an INPUT statement in her program would allow her to enter

a value when she ran the program at a later time. It is

important to note that she was confused in this way even though i
she had successfully completed several other BIP tasks that

required her to use INPUT and assignment statements. 1

* DD”s handling of the FOR statement required by this
program suggested major misunderstandings at several different
levels., She tried several different (and illegal) forms of the
FOR statement (such as "FOR X = 2 - 8"), had prohlems determining
the exact relation between the FOR and NEXT statements, and was
unsure of the proper way to incorporate the STEP information into
the FOR statement, Bevond the svntax of the FOR statement, she
had trouble grasping two ideas that are concerned with
higher-level aspects of programming: (a) embedding one

conceptual group of statements (the statements to be repeatedly

S

DD”s program consisted of the statements shown in the sample
program, hut her specification of the upper bhound and the index
variahle of the FOR was incorrect. It is unclear how much
additional work by DD would have been required to correct this
error.

executed) within another group of statements (the FOR and NEXT
statements that controlled the iteration), and (b) using the
FOR”’s index variable for some purpose in the statements within
the iterative looo. Although she finally wrote a progqram that
had the prover collection of statements in the riqght order --
INPUT, FOR, PRINT, NEXT, and END -- she confused the uses and
functions of the FPOR’s index variable and the number, entered
through the INPUT statement, that controlled the uvper bhound of

the lnop.

* She never had a good understanding of the overall Aesign
of the orogram. The use of a variahle to specifv the upper bound
of the loon was the last nart of the program to be written;
throughout the majority of the session, she wrote FOR statements
with explicit upper hounds, either 8 or 10. She used the MORE
command -- the command that tells RIP that the student has
finished working on one nrohlem and wants to o on to another --
several times with nrograms that contained such an explicit unper
hound, indicatina that she thought she had a correct vrogram even

with that incorrect construction,

Not all these prohlems can be hlamed on DD herself, Rather,
some of her nroblems can he attributed to various asnects of the

human tutor, the modified version of RTP, and BASTIC,

3.4.1 Prohlems with BASIC
RASTC is An inareasinglv common first computer anaunaae, huat
it has mane disadvantaqgeous aspects For heainnina nroarammers,

Mansr af rteen 3ro related o notions of stracthared nrogrammin,

Dpecverr v e Lo by it RAGTIN T pxbtramely limited coantey?

43
structures can be very dAifficult to read and understand. 1In
addition, the restricted length of BASIC variable names (which
makes the use of meaningful mnemonics difficult) and the strict
format of statements (a line must contain exactly one complete
statement) can also be expected to complicate the programming

task.

3.4.2 Problems with BIP
There are two aspects of BIP that should he improved in

future tutorial systems:

1l: Limited display. The student”’s interaction with BIP must

take place within the twentv-four lines of a computer terminal‘s
screen. This greatly restricts the student”s abilitvy to work
simultaneously with a tutor, his program, and BIP. Twenty-four
lines are not enough to allow a student to keep track of the
current state of his program, the output produced by that
program, recent changes made to the nrogram, interactions with
BIP, and hints obtained from several possible sources. DD often
entered program lines that were already present (at one point,
DD”s TWOS program had four END statements), entered new lines
with the same statement number as already-entered statements
(therebhy erasing the 0ld and possibly correct statements), and
ran the program with certain statements missing., A system that
used multiple "windows"” to display the various components of the
tutorial interaction would avoid many of these problems. Such
terminals were not available when BIP was built, but future tutor

projects should take advantage of these svstems,

2: Rigid input format. BIP offers no provisions for

44
correcting spelling or typing errors. Hence, when DD typed "RU
N" instead of "RUN", BIP could do nothing more than identify it
as an illegal command. If tutorial systems for bheginning
programming require the students to enter their programs on a
kevboard (rather than choosing command names and arquments from a
menu, for instance), automatic spelling correction might be

useful,

3.4.3 Problems with the Tutor

Certain problems in DD”“s performance can also be traced to
the tutor. 1In general, our tutors -- skilled computer
programmers who generally d4id not have substantial teaching
experience -- dAid quite well. When a hint was requested, thev
were consistently able to identify the student”s problem and
offer a relevant hint. Whether or not that hint was the "right"
or the "bhest" hint is beyond the scope of this research. For
now, the bhest evidence for the appropriateness of our tutors”
hints is that, after receiving hints, students always worked on
their problem hefore requesting another hint; on no occasion d4idqd
a student indicate, by asking for two consecutive hints, "I

understand that -- my nroblem is...".

Our tutors” vroblems stem orimarily from the fact that the
tutorial domain is verv open-ended, and that instantaneouslv
generating high-quality hints ahout any aspect of a programming
problem and a student®s solution to that problem is not easy.
Some of these problems were mechanical and avoidable --
occasionallv, a tutor would start to type a hint, change his

mind, and erase what he had written, one character at a time.

45
All of this was visible to the student in these experiments; a
minor modification would allow the tutor to compose his hint
carefully and send it to the student only when he was satisfied

with its form.

More relevant to this discussion, however, are the occasions
when the tutors” hints were inconsistent or ambiquous. For
instance, when DD was trying to construct a legal FOR statement,

the following interaction took place:

a: DD requested a hint, with her program in the following
state:

10 FOR X = 2 TO 8 STEP 2

20 PRINT X

30 END

b: The tutor said "You have a FOR on line 10, but nowhere do

you have a NEXT."

c: DD tried to change line 10 to:
10 FOR X = 2 TO 8 NEXT STEP 2
wWwhen BIP rejected this illegal statement, DD asked for another

hint.

d: The tutor said "I°m sorry, you misunderstood my last
hint., You need a NEXT statement on a different line AFTER the

PRINT statement...."

The source of this error lies in the dAiffering knowledge
structures possessed hy the student and tutor that guide their

individual comorehension of the sentence. While it is clear to

the tutor that NEXT helongs on a separate line -- because of his

- et O S 3R £ et St

i

46
prior experience with BASIC -- it is not so clear to DD, and the
observed misinterpretation occurs. This incident might have been
avoided if the tutor had said in his first hint, "...nowhere do

you have a NEXT statement."

A related problem with the different knowledge structures
possessed hy student and tutor was illustrated by another part of
DN”’s session, DD had requested a hint when she was having
problems writing a correct FOR statement; the tutor offered the
following hint:

If we want to set A to go from 1 to 10 and print A we
would write the following program:

10 FOR A=1 TO 10
20 PRINT A
30 NEXT A
This is similar to your task, except that
(a) you need to go from 2 to whatever number the user
typed.
(b} you want to count by twos.
This is done by saying:
FOR variable = start TO finish STEP 2.
DD responded to this hint by entering the statement:
FOR VARIABRLE=START TO FINISH
The problem exposed here is that the tutor is using a particular
notational system common to experienced computer programmers:
statements are described by presenting their required keywords in
capital letters (such as FOR and T0), and presenting variables

that must he specified by the programmer in lower case terms that

describe their function (e.q., variable, start, and finish). DD

does not possess this structure, so she interprets the tutor’s

hint too literally. Mismatches of this nature were common in our

protocols; at one point, the tutor was explaining the use of the

v

s E o

47

STEP keyword in the FOR statement:

To tell the loop what to step by use the following form:
10 FOR something = something TO something STEP NUMBER
where NUMBER is the number you want to step by.

To count by 5°s you would say ... STEP 5,

DD then entered:

10 FOR X=2 TO 86
20 STEP 2
The mismatch here lies in the tutor”s use of "..." to stand
for the part of the FOR statement she had already written. 1In
addition, the problem exists because of BASIC”s requirement that
the STEP information he on the same line as the FOR statement; a
less rigidly formatted language would not have posed this
Droblem.7
These problems illustrate the advantages and disadvantages
of "canned" hint systems and intelligent tutoring systems. While
it is impossible to anticipate every occasion for which a canned
hint should be constructed, hints can be very carefully worded
for those circumstances that can be anticipated. 1In contrast,

while human tutors possess the probhlem-solving power systems such

as BIP lack, the task of diagnosing a student”s problem, deriving

6

Note DD“s failure to use a variable for the loop”s upper
bound.

7

On the other hand, such a language would not have revealed
this oroblem in DD”’s conceptualization of the task, and DD would
probabhly have written her future FOR loops with the STEP
information on a separate line.

L 4
£
¥

48
a sound hint for that probhlem, and converting that hint to an
unambiguous piece of natural lanquage (all while being under the
time pressure of trying to generate this hint as quickly as

vossible) is extremely complex for even human tutors,

3.4.4 Problems with the "Hint Button" Approach

We originally proposed to study tutoring syvstems with "hint
buttons" as a way of isolating one part of the intelligent
tutoring domain. By providing hints only upon request, we could
bypass the complex issue of identifying the circumstances under
which the tutoring system should interrupt the student with a
hint, and concentrate our efforts on techniques for generating
these hints. These techniques are described in the discussion of
TURTLE (Section 4). However, with the present experiments, we
can address the guestion of whether successful tutors might be
built by taking this shortcut, and, like the modified BIP svstem
and TURTLE, giving hints only when a student requested them,
These experiments suggest that such a shortcut would not be

reasonable.

A surprising finding of these experiments was that our
subjects were hesitant to request hints from the tutor; reqguests
averaged onlv about four per session (Table 6). The fact that,
in these experiments, the students had to ask another person for
help does not seem to bhe part of the problem. The students were
also unlikely to take advantage of BIP“s help facilities, and, in
some informal experiments, there was a similar hesitancy to
request hints on the part of students who worked with TURTLE,

whose hint facility was completely automated.

U IO

ST TR TR ey, e e e TR R T T

S TR TeTEEERs . R s e T

y

49

Our experiences with both tutorial systems suggest that one

of the commonlv cited educational advantages of programming --

that writing a computer progqram is often like solving a puzzle or

even playing a game -~ works against the idea of a "hint hutton".

Subjects seemed to treat the use of the hint button as cheating,

or something that should be done onlv as a method of last resort.

It could be arqued that our subjects were simply not

motivated strongly enough to request hints, and that more

encouragement would lead to more requests for hints. However,

this would ignore the long-range problem of the design of an

"intelligent", hint-giving, tutor,

One of the reasons our tutors

could successfully identify the student”s probhlem when a hint was

requested was hecause students requested hints so infrequently.

When DD entered

10 FOR X = 2 TO 8

20 STEP 2 flagged
20 STEP 2 flagged
20 X = STEP 2 flagged
STEP 2 flaqgged
20 STEP 2 flaqgged
20 STEP 2 flagged

hefore finallv asking for a hint, it

as
as
as
as
as
as

illegal
illegal
illeqgal
illeqgal
illegal
illegal

by BIP{
by BIP
by BIP
by BIP
by BIP
by BIP

was clear she was having

trouble with the syntax of the FOR/STEP statement. Without this

revetition, the tutor might not have been abhle to identify her

problem. Suppose DD had entered line 10, as in the above

example, and, after realizing that she did not know how to

snecify the STEP statement, asked for a hint.

Working only with

the single statement thus far entered by the student, the tutor

could offer hints referring to the ahsence of of the STEP

comnonent of the FOR statement, the missing NEXT statement, or

the fact that the FOR uses an explicit upper hound rather than a

50
variable. Only one of these alternatives would correspond to the
student”s real problem, and the tutor would need additional
evidence to select the right one. With frequent hints and no
supplementary information from the student to help identifv his

problem, effective tutoring would be Aifficult.

The study of these protocols leads to two conclusions.
First, interruption by the tutorial system to give certain hints
would not be bhevond the capability of current "intelligent
tutoring systems" technoloqy. Many of the hints students
requested were preceded by repeated syntax errors like those
shown abhove. While the comprehension and diagnosis of a computer
program”s desian is considerably more Aifficult than identifying
svntax errors, a tutorial system capable of diagnosing repeated
svntax errors and interrupting the student with a hint about the
statement”s nroper form would not be difficult. Further, a
detailed theorv of how people learn to program is not really
needed in order to suggest that a student who makes several
consecutive identical errors should be interrupted with
corrective advice (although such a theorvy would be critical to

generating the hest vossible hint).

Second, the communication between a student and a tutorial
svstem should he more flexibhle than allowing the student, in
effect, to say nothing more than "I need help!". 1In most cases,
the diagnosis of a student”s probhlem will be facilitated bv
allowing the student to describe why he is requesting a hint.
Natural lanquage would ultimately be useful for this purvose;

although the Adifficulties of huilding natural lanquage systems in

51
unconstrained domains are well-known, a tutorial dialogue in a
particular domain might provide sufficient constraint to make
such a system possible (cf. Brown & Burton, 1975; Stevens &
Collins, 1977). Alternatively, the tutorial svstem might offer a
menu of problems the student could be having, and allow the
student to identify the relevant one. A simple system might have
a predefined menu that was meant to cover all the oroblems a
student might have, while a more advanced svstem might infer a
smaller set of possible problems from the tutorial context. If a
student working on the TWOS probhlem entered "FOR I = 2 TO 8" and
requested a hint, the system might offer the menu:
Do you want help on:

1: the STEP component of the FOR statement

2: the NEXT statement

3: the use of variables in FOR statements

4: something else

5: nothing (you don“t want any help)

These topics for possible hints would be identified by
comparing the correct statement to the statement entered by the
student and offering help about each of the mismatches between
the statements (e.g., the absence of the STEP component in the
FOR statement, the unentered NEXT statement, and the improper use
of a numerical constant as the upper bound of the loop) or some

other oroblem not included in this list, as well as the option of

rejecting help,

3.5 Advantages of a Human Tutor
What are the propverties of a human tutor that make his
suagestions more valuable to a student than the help offered by

BIP? The assistance arailable from the tutor and from BIP

differed in two wavys:

|
#
|
|

52

* Flexibilitv: Unlike BIP“s help messages, which are tied to

specific command or statement errors, a human tutor can, at anv
time, offer help on any part of the tutorial interaction, 1In
addition, a tutor can prorerly interpret a verv large number of
ways of solving a particular probhlem, whereas BIP“s diagnosis of

a student’s program assumes a particular approach to the probhlem.

* Specificity: Although BIP can describe in general terms

the statements that comprise a program (i.e., "... vou need an
IF statement and two PRINT statements..."), identify illegal
statements, and offer assistance on the proper forms of these
statements when errors occur, it can offer very little help once
the student has entered a statement that is syntactically leqal,
but incorrect in the context of the current problem. 1In
contrast, a human tutor can evaluate a legal statement and
determine that some subpart of the statement -- verhaps the
variable that specifies the upper hound of a FOR statement -~ is
at fault. Recall that the original version of BIP does have a
"hint" facility, through which students can receive hints by
issuing the BIP command "HINT", but since these hints are
predefined in much the same way as the help BIP offers after
statement errors, this facilitv can offer neither flexibility nor
specificitv., For instance, BIP”s hint for TWOS is:

The -FOR~ statement can make the loop count by twos

automatically. Look for an explanation of the “step”

part of the statement.
Although this hint may sometimes be useful, it would not have
been much help to DD, who knew that she had to specify STEP

information, but d4id not know the right way to do this,

ndas.

-

e — Y

53

In human tutors these properties come from knowledge of the
problem at hand, general programming and problem solving
techniques, and a variety of educational and tutorial strategies.
The second portion of this report describes a system that,
through its partial representation of these kinds of knowledge,
can give a student more flexihle and specific tutorial
assistance. While this work is only a beginning, it brings us a

step closer to more "intelligent" computer-based tutoring.

Section 4

54

} Program Understanding and Synthesis in LOGO: The TURTLE Tutor

ﬁ TURTLE is a tutorial system that provides "intelligent”
assistance for a student solving a set of tasks in LOGO
programming: this assistance is intended to be approvoriate to the
student”s plan for solving the task and specific to the probhlem
facing the student when help is recquested. TURTLE uses analysis
by synthesis techniques to interpret the student”s program, to
generate hints upon request by the student, and to assist the

user in correcting flawed programs.

LOGO programs draw figures on the screen of a graphics
terminal by simulating the movement of a "turtle". The turtle
can draw a line on the screen corresponding to its movement. At
the beginning of a session, the turtle is in the center of the
screen, facing north; its position can be changed with the

8
following primitives :

-DRAW X: move forward X units, drawing a line.
-MOVE X: move forward X units without drawing a line.

-TURN X: turn the turtle X deqgrees clockwise.

A student®s program can be made up of these primitives and
references to user defined functions. The current implementation
of TURTLE does not support recursion, iteration, variable

assignment, or subroutine calls more than one level deevp.

8

Note that these vrimitives differ slightly from those
described by Papert (1980), and in fact correspond to those
defined in OGOL (Section 2).

3

55
Programs that meet these constraints can draw simple pictures
like TRIANGLE, TREE, WELL, and NAPOLEON (Figure 2), the four

tasks that form the current version of TURTLE.

A student working with TURTLE is given the task of writing a
LOGO program that will draw one of these figures. This program
may simply he a series of LOGO statements -- an open coded
oroaram -- or it may decompose the figure into a number of
subfigures, each of which is drawn by a function defined by the
student. For instance, the WELL (see Figure 2) can be decomposed
into the triangle at the top of the figure, the square at the
bottom, and the line that connects the triangle and the square.9
In whatever way the program is written, TURTLE”s task is to
identify the olan used by the student to construct this program

and to use this vplan to help the student locate and correct

errors in the program.

4.1 Sample TURTLE Sessions for the TRIANGLE and WELL Tasks.

When a student begins a session with TURTLE, he is presented
with a general Adiscussion of computers and the LOGO language.
During this discussion, he can experiment with the various LOGO
primitives by entering statements and observing their results.
The student then solves the TRIANGLE and TREE tasks. Next, the
concept of vroqgram decomposition is introduced, and the student

is encouraged to use decomposition to solve WELL and NAPOLFON.

9

Other decompositions are possible, of course; TURTLE”s
analysis of problems with several Aifferent decompositions is
described in Section 4.2.5.

a
i 1~ b
%
|
! TRIANGLE
a
c d b
F
:) ;
e
i 9
WELL

56

TREE

NAPOLEON

Figure 2 Sample TRIANGLE, TREE, WELL, and NAPOLEON Figures

57
4.1.1 TRIANGLE: Interpreting Open Coded Solutions
The first task presented to students by TURTLE was TRIANGLE,
in which the student was to write an oven coded program to draw
an equilateral triangle (see Figure 2; note that the triangle is
"pointing” upward). The following is a trace of a hvpothetical
subject’s solution of this problem; TURTLE’s output is in

boldface. This section presents only a sample interaction with

TURTLE -~ a detailed description of how TURTLE operates will
follow.
TURTLE first displays the correct solution of the triangle r

task on the graphics terminal; this figure can be drawn by a
program that starts at vertex A (Fiqure 2) and proceeds as

follows:

TURN 30
DRAW 200 i
TURN 120
DRAW 200
TURN 120
DRAW 200 4

The student is then asked to define TRIANGLE:

TRIANGLE is not yet defined., Please enter the steps in
TRIANGLE. (Type QUIT to end the function definition,
RESTART to start over, and DELETE to delete the last
step.)

First step? DRAW 200
Next step? TURN 60
Next step? DRAW 200
Next step? QUIT

OK, TRIANGLE is defined!

There are several errors in the student”s proposed program,

Onlv two of the three sides of the triangle are drawn, and the

58

rotation between the first two steps should be TURN 120, rather

than TURN 60,

Despite the presence of these errors, TURTLE

discovers three paths through the triangle that provide

relatively good matches to the student”’s program, and asks the

student which of these corresponds to his path through the

figure:

Did you to intend to follow path C A B C?
pid you to intend to follow path B C A B? NO
Did you to intend to follow path A B C A?

Having identified the path used hy the student, TURTLE

generates the following analysis of the student”s program, which,

if desired, can be presented to the student:

Analysis of your program:

Student
Code
DRAW 200
TURN 60

DRAW 200

Correct

Code

DRAW 200

TURN 120

DRAW 200

TURN 120

DRAW 200

Commentary
Correct mainstep to draw
line segment AB

Incorrect interface to turn
through angle ABC

Correct mainstep to draw
line segment BC

Missing interface to turn
through angle BCA

Missing mainstep to draw
line segment CA

TURTLE then displavs the figures corresponding to desired

solution and the student”s current solution on the qraphics

terminal, and begins the debugging process:

59

Disregarding the orientation for now, what bugs, if
any, do you see in the function TRIANGLE?

NO BUGS
MISSING STEPS
INCORRECT STEPS
EXTRA STEPS

- W N -
|)

v
N

The student says that there are missing steps; TURTLE

agrees, and offers further information:

Yes, there are MISSING STEPS in the function TRIANGLE.
You did not mention the following bugs: The function
TRIANGLE has INCORRECT STEPS.

At this point, TURTLE shows the student his program and
allows him to make modifications or to request a hint; the

student requests a hint,

Here are the steps you are editing:

DRAW 200
TURN 60
DRAW 200

What would you like to do?

- SHOW FUNCTION
- BUGS REPORT
- DELETE STEP
CHANGE STEP
- INSERT STEP
- RECEIVE HINT
- FINISH EDITING

NAN e WN
|

> 6

{RECEIVE HINT]

Here, TURTLE offers a general hint ahout the missing steop --
You are missing the line segment from C to A -- after which the

student asks for another hint, This hint is more specific:

You are missing the step DRAW 200 to draw the line
segment from C to A.

60

At this point, the student has been returned to the editing
menu, asks to insert a step, and enters DRAW 200 at the end of
his program, which will draw the third side of the triangle. He
then requests another hint, and receives help on one of the

missing TURNs:
You are missing the rotation to turn through angle BCA.

When this hint is displayed, the line segments that make un
angle BCA are highlighted in the displays of the correct drawing
and of the results of the student®s current program. The student
then asks to enter the step TURN 60 hetween the latter two DRAW
200°s. However, TURTLE rejects this addition:

That step does not need to be inserted anywhere. A
TURN does need to be inserted, but the value 60 is

incorrect.

At this point, the student determines that a 120 degqree turn
is needed, and enters a TURN 120; the result of this revised
program is then displayed. The student now asks for another

hint; TJRTLE revlies
The rotation to turn through angle ABC is incorrect.
and highlights the rotations in both the correct dArawing and the

student®s current drawing. The student continues by requesting

another hint, and is told:

The rotation to turn through angle ABC should be
TURN 120 instead of TURN 60.

Here, the student uses the CHANGE STEP option in the editing

menu to change the TURN to 120 degrees, and then selects FINISH

I
i

ENITING. The function is now correct, and TURTLE reports: The

function TRIANGLE has no bugs!

Although the function itself is correct, the figure’s
orientation is not: the triangle "points" to the right, rather
than upward. TURTLE now asks the student to specify interface
steps that will correct this orientation error:

You provided no setup for the TRIANGLE-TASK. What
hbugs, if any, do you see in the orientation of TRIANGLE?

The student says that there are missing steps, and TURTLE
agrees:

Yes, there are MISSING STEPS in the orientation of
TRIANGLE. No setup interface for TRIANGLE has been
provided. What would you like to do?

Here, the student asks for a hint regarding the interface,
and, after receiving it --

Another TURN command is necessary to orient TRIANGLE
correctly.

inserts it at the correct place. The student again asks to
FINISH EDITING, and TURTLE tells him that he has completed the

task.

4,.1.2 WELL: Decomposing a Complex Figqure

The following section describes TURTLE"s tutoring of the
more complex WELL task, and focuses on how TURTLE recognizes
standard task decompositions and helps the student debug

interfaces and fiqure orientation.

61

.

e e R wh e

62

The session begins with the display of a wishing well (see

Fiqure 2); TURTLE then asks the student to enter his program,

here called WELL.

First step?

Next step?

Next
Next

OK, WELL is

The student has decomposed the WELL

step?
step?

TOP
DRAW
BOX
QUIT

200

defined!

into three steps: his

plan is to draw the too of the WELL with the function TOP, the

base with the function BOX, and the POLE with the open coded DRAW

200. TURTLE now determines the student”s nlan from this program:

Let me see if I understand your program:

The function TOP draws the ROOF of the WELL-TASK,
The code:
The function BOX draws the BASE of the WELL-TASK.

Does that seem correct? YES

DRAW 200 draws the POLE of the WELL-TASK.

Ry identifving the student”s plan for the program -- in

vparticular,

the purposes of the TOP and BOX functions and the

open coded DRAW -- TURTLE will bhe ahle to identify errors and

offer the same kinds of advice that it did in the TRIANGLE

example.

TIRTLE now asks the student to define either TOP and

BOX; the student chooses to work on TOP first.

TOP is not yet defined.

steps in TOP.

First step? DRAW

Next
Next
Next
Next
Next
Next

step?
step?
step?
step?
step?
step?

OK, TOP is

TURN
DRAW
TURN
DRAW
TURN
ouIT

100
120
100
120
100
180

defined!

Please enter the

e eommmrmeea e oot

Note that this is identical to the definition of TRIANGLE
shown previouslv, except for the addition of TURN 180 at the end
of the proqram, which is meant to put the the turtle in the
promer position for drawing the WELL”s POLE. (This statement .
alone is not sufficient; this error will be corrected later.)
TURTLE now tries to determine the plan underlyving the student’s
TOP program, and again asks which of the three possible paths
through the WELL”s triangle corresponds to the student”s oplan:
Did you to intend to follow the path NO

B C A B?
Did you to intend to follow the path A B C A? NO 4
Did you to intend to follow the path C A B C? YES]

Using this plan, TURTLE determines that the student”’s
function is correct; the final TURN 180 is classified as part of
the interface hetween the TOP and the (open coded) POLE. TURTLE

now moves the student on to the definition of the BOX function:

BOX is not vet defined. Please enter the steps in BOX.
First step? DRAW 100

Next step? TURN 90

Next step? DRAW 100

Next step? TURN 90

Next step? DRAW 100

Next step? TURN 90

Next step? DRAW 100

Next step? QUIT

OK, BOX is defined!

As before, THRTLE determines the path the student planned to take
through the hox:
Did you to intend to follow the path F G I H F? YES

and notes that the code for BOX is correct.

Now that the student has defined the three components of the
figure, he must AdAefine a series of interface steps that will

proverly position these narts of the program with respect to each

A4
other. TURTLE first checks its hypothesis about the interface
between the TOP and the open coded POLE:
. Did you intend to interface the function TOP to the
i step DRAW 200 by following the path C D ? YES
TURTLE now shows the student whatever interface steps are
already voresent in his program (here, there is only one -- TURN
180) and compares them to the correct interface:
Here is the interface you defined between the mainsteps
in the function TOP and the step DRAW 200: .

TURN 180

Analysis of your interface between the function TOP and
the step DRAW 200 in WELL:

Student Correct Commentary
Code Code
TURN 180 TURN 180 Correct interface to turn

through angle BCD

MOVE 50 Missing interface to move
over line segment CD

TURN 90 Missing interface to turn
through angle CDE

TURTLE now gquides the student through these modifications
until the correct interface has heen constructed, Similar stens
are taken in constructing an anpropriate interface between the

open coded POLE and the BOX. TURTLE then checks the orientation

of the entire figure and dAetects another error: although the
components of the fiqure itself are correct, the figure as a
whole is at an incorrect angle, TURTLE asks the student about

errors in this orientation --

You provided no setup for the WELL-TASK.
What bugs, if any, do you see in the orientation of WELL?

A5
Here, the student requests and receives a hint -- Another

TURN command is necessary to orient WELL correctly -~ and enters
the necessary step -- TURN 30. The figure is now constructed

correctly, and the session ends.

4.2 TURTLE: Flan Understanding via Analysis by Synthesis .'
The key to any successful tutorial system is to understand

the plan that the student has generated to solve the prohlem at

Py —

hand. 1In this project, this key is understanding the design of

the student”s LOGO program and the function of each of the steps
of the program. To this end, TURTLE exploits the constraints of
the turtle gravhics domain and the restricted subset of the LOGO
lanquage used here: TURTLE”s first step in identifving the
design of a student”s program is to generate the entire set of

10
"viable" paths through the fiqure and to compare them to the

vath drawn hy the student”s program. Since plans can he
associated with these candidate paths when they are generated, {
the nroblem of identifving the student”s plan is reduced to the
problem of finding the path that offers the best match to the

student”s program.

This process requires three classes of knowledge structures;

the remainder of this section describes these structures and how

they are used to achieve the goals of appropriate and specific

student assistance. TURTLE”s curriculum structure specifies the

10

Viable paths are those with a limited number of path retraces
(repeated traversals of the same line segment) -- tvpicallv no
more than one -- and with line seqgments that are broken no more
than once.

—

66
textual information and function calls that comprise the tutorial

session. Its task networks provide thorough descriptions of the

figures to be drawn by students and are essential to TURTLE®s

analysis by synthesis evaluation of a student”s program. TURTLE

uses a fiqure”s task network to synthesize a number of programs

capable of drawing this figure. Differences between these {
programs and the student”s proposed program are then noted by

means of annotations to the synthesized programs. These

annotations are used to identify the student”s plan, by finding

the svnthesized program that most closely matches the student’s '
program, and to quide the construction of hints, by means of a

set of hint generation structures that detect particular error

annotations and construct hints that reflect the presence of

these errors.

4,2.1 Curriculum Structure
For each problem in the curriculum that is to be presented

by TURTLE, two functions are defined: a presentation function

that will carrv out the actual tutoring of the problem, and a

successor function that will determine the next problem that

should be presented to the student. An executive function then
retrieves and executes the presentation function for the selected
problem (thereby carrving out this problem”s tutorial session),
and, by executing the successor function, selects the next
problem that will be given to the student. The successor
function can, in orinciple, hase this decision on such factors as
the student”s performance on the current and previous problems,

However, at this early stage in TURTLE“s development, the

problems” successor functions simply pass the student through the

67

TRIANGLE, TREE, WELL, and NAPOLEON tasks, in that order.

4.2.2 Task Representétion

} As described previéuslv, TURTLE generates all viable paths
through a figure and then matches the student”s program against
these paths. To generate these paths, TURTLE must have a

1 representation of the figure that is explicit enough to supvort
| path generation, yet general enough to allow for errors in the
student”s program and for variations in the size and orientation

of the figure drawn by the student.

THURTLE uses a svstem of task networks to organize this

information. The task networks for the TRIANGLE and WELL fiqures

are shown in Tables 7 and 8.

These networks are frame-like units with the following

slots:
~-TASK-NAME: the name of the task.

~-FIGURE-GEOMETRY: a svecification of the vectors and
angles that comprise the figure. This slot specifies:

-VERTICES: the points of the figure that are to bhe
connected.

~CONNECTIONS: the line segments that connect the
figure”s vertices. This slot also contains
information ahout the size and possible
subdivision of the line segments,.

-INTERFACES: the size of angles formed bv connected
line segments.

-STARTING-POINTS: the vertices that mav be used to
begin the fiqure”s construction.

-DESIRED-ORIENTATION: the orientation of a particular
line segment, by which the orientation of the entire
figure can be determined.

-POSSIBLE-NAMES: a list of possible names for the figure
and anv subfigures.

68

Table 7:

TURTLE’s task network for TRIANGLE. i
References to vertices correspond to those of the
figures shown in Figure 2.

TASK-NAME: TRIANGLE
FIGURE~-GEOMETRY :

VERTICES:
(a b ¢)

CONMECTIONS:
. ({join a h)
via (line-segment 1 x))
((ioin a ©)
via (line-segment 1 x))
((join b)

via (line-segment 1 x))
(default-for x 100)

INTERFACES:
(c a h angle 60) ,
(b ¢ a angle 60) g
(a b ¢ angle 60) ;

STARTING-POINTS:
(start-at (a b c¢))

DESIRED-ORIENTATION:
(orientation a b should-be 150)

EXPECTED-DECOMPOSITIONS:
(trianqle -> open-code))

EXAMPLE-SOLUTION:

((turn 30)

(draw 1 x)

(turn 120)

(draw 1 x) 4
(turn 120)

(draw 1 x)) .
((setup-for-task) !
(draw-line~-segment c a)

(turn-through-angle ¢ a b)

(draw-line-segment a b)

({turn-through-angle a b ¢)

(draw-line-segment b ¢))

L
)
i
!

Tows T

Table 8:

TURTLE”s task network for WELL.

TASK-NAME: WELL
FIGURE-GEOMETRY :

VERTICES:
(abcde f£fgh i)

CONNECTIONS:
{(join a bh)
via (line-segment 2 x))
((join a ¢)
via (line-segment 2 x))
((join b ¢)
via (line-segment 2 x)
contains ((b 4) (c 4))
subdivided-by 4)
({(join b 4)
via (line-segment 1 x)
contained-in bh c¢)
((join 4 c)
via (line~segment 1 Xx)
contained-in b ¢)

((join A4 e)
via (line-segment 1 2z))

{(join h f)

via (line-segment 2 v)

subdivided-hy e

contains ((h e) (e £f)))
((join f qg)

via (line-segment 2 v))
((join g i)

via (line-segment 2 v))
({(join i h)

via (line-segment 2 v))
({join h e)

via (line-seagment 1 v)

contained-in h f)
{(join e f)

via (line-segment 1 v)

contained-in h f)
{default-for (x 100) (v 100)

INTERFACES:
(d ¢ a angle 60) (a b
(c a b angle 60) (b c
(a b c angle 60) (e £
{i h e angle 90) (g i
(f g 1 angle 90) (th f

Q5awpl

tRoof of the well

:Pole of the well

1Base of the well

(z 200))

angle
angle
angle
angle
angle

60)
60)
90)
90)
90)

69

(i h £ angle

(f e d angle

(c d e angle

(b ¢ d angle

(h e f anqle

: (h £ e angle
STARTING-PNINTS:

(abcdeHf

DESIRED-ORIENTATION:

90) (¢ e h angle 90)
90) (e d b angle 90)
90) (c 4 b angle 180)
0) (¢ b 4 angle 0)
180) (f h e angle 0)
0)

g h i))

t (orientation i g should-be 90)

POSSIBLE~NAMES:
(roof is-also-called
(pole is-also-called
(base is-~also-called
(tree is-also-called
EXPECTED-DECOMPOSITIONS:

(Vertices:

(Vertices:

(well -> tree base
(Vertices:

(well -> base tree
(Vertices:

(triangle roof ro tri tr too))

(pole po line 1li line-segment
vect middle mid))

(base ba square sq squ bottom
bot bo))

(tree))

(well -> roof vole hase

({roof a b ¢ 4)

{role 4 e)

lbase h e f g 1)))

(Termination-Points:

{llroof ending-~point) 4)

((pole starting-point) 4d)

((pole ending~point) e)

((hase starting=-point) e))))
(well -> base pole roof

((roof a b c 4)

(pole 4 e)

(hase h e £ g i)))

(Termination-Points:

(((roof starting-point) 4)
{{pole ending-point) 4)
((pole starting-point) e)
((base ending-point) e))))

((tree a b c 4 e)
(base h e £ g i)))
(Termination-Points:
(((tree ending-point) e)
((base starting-point) e))))

((tree a b c d e)
(hbase h e f g 1i)))
(Termination-Points:
(((tree starting~point) e)
((hase ending-vpoint) e))))

70

|
{
i
l
|

((turn
(draw

i (turn
; (draw

(turn
1 (draw
(turn
(draw

h (turn
(draw
(turn
{(draw

L (turn
(draw
(turn
(draw
{turn
(draw
(turn
(draw

EXAMPLE-SOLUTION:

270)
1 x)
120)
2 x)
120)
2 x)
120)
1 x)
270)
l z)
90)
1v)
270)
2 v)
270)
2 v)
270)
2 v)
270)
1l vy))

4 ——— 40 ra

t (well -> oven-code)

((setup-for-task)
(draw=line-segment 4 c¢)
(turn-through-angle 4 ¢ a)
(draw-line-segment c a)

. (turn-through-angle ¢ a b)

I (draw-line-segment a b)

(turn-through-angle a b d)

{draw-line-segment b 4)

(turn-through-angle b 4 e)

(draw-line-segment 4 e)

(turn-through-angle 4 e h)

(draw-line-segment e h)

(turn-through-angle e h i)

(draw-line-segment h 1)

(turn-through-angle h i q)

(draw-line-segment i q)

(turn-through-angle i g f)

(draw-line-segment g f)

(turn-through-angle g f i)

(draw-line-segment f e))))

(default-nindings well ((X 100.0)

71

IR W

o

(Y 100.0) (7 200.0)))

72
~EXPECTED-DECOMPOSITIONS: descriptions of how the figure
might be decomposed. For each of the figures that can

be decomposed (TRIANGLE cannot), this slot lists the

sets of vertices that comprise these subfigures and the

accentabhle begqinning and ending points for the

subfiqures.

~EXAMPLE-SOLUTION: a LOGO program that, once exact

values for the line segments have heen determined, will

draw the fiqure correctly. This structure also

contains general descriotions of the function of each

of the statements of the program, such as

DRAW-LINE-SEGMENT and TURN-THROUGH-ANGLE,
4.2.3 Program Synthesis

These task networks vrovide the descriptive information
TURTLE uses to generate the viable paths through a fiqure and the
1.0OGO programs that correspond to these paths. The resulting
paths can then be matched against the student”s code, errors can

be detected and diagnosed, and approvriate hints can be given,

This path generation devends upon the specification of the
fiqure®s STARTING-POINTs and CONNECTIONS. TURTLE generates all
viahle pmaths from each of the figure”s starting points, as
determined by the connections hetween the fiqure®s vertices. 1In
TRIANGLE”s task-network, since all three of the triangle’s
vertices are svecified as starting points, paths through the
triangle would he generated from vertices A, B, and C, The
connection information would then quide the vath construction
process: two paths would bhe built from vertex A, based on the
line segments hetween vertices A and B and between A and C. These
naths are then expanded in a similar way: for instance, the "A ->
B" path is expanded to "A -> B => C" via the line segment from R
to C. This generation process overates under three constraints.

First, all the fiqure’s line segments must appear in the final

path., Second, a line segment can be traversed more than once,
but only one of the traversals can be a DRAW; the rest must be
retraces that MOVE over the already drawn line. Third, no more
than a fixed number of retraces may take nlace -- if retraces
were not limited, an infinite number of oven coded solutions
would exist for even the simplest fiqures. Our experiments with

TURTLE limited the number of acceptable retraces to one.

This technique nroduces six possible paths for the TRIANGLE
fiqure:
A ->B=>C =->2A

A
B ~->C ->A ->B B~->A->C ~->B
C ->A ->B->2C C

These paths are then converted into LOGO code hy referring to the
task network”s specifications of line seqments and interface
angles. Consider the path "A -> B -> C -> A", The first step in
this path, "A -> B", corresponds to the CONNECTIONS éntrv:

((JOIN A B) VIA (LINE-SEGMENT 1 X))
(see Tahle 7) and a DRAW is generated. Since the absolute size
of the fiqure that will be drawn bv the student cannot bhe
nredicted, the length of this line segment is specified in terms
of a constant and a variahle. The "1 X" in the " (LINE-SEGMENT 1
X)" structure indicates the desired length of the line segment as
the product of the scale factor, 1, and a variable, X; the
pseudo-L0GO statement "DRAW 1 X" is generated. These
constant-variahle pairs allow THURTLE to interpret student
programs of any absolute size; the onlv regquirement for a correct

orogram is that the relative sizes of the fiqure correspond to

it

w

74
those defined in the task network. Default values for these
variables are specified so that TURTLE can generate executable
LOGO code from these structures hefore explicit line segment

lengths have heen specified,

The next step in this vath is "B -> C"; here, TURTLE should
build the code not only for the DRAW from B to C, but also the
TURN that will draw this line segment in the prover direction.
This TURN through the angle ABC is derived from the angle”s
INTERFACE specification:

(A B C ANGLE 60)
The instruction "TURN 120" results: the 60 degree interior angle
of the triangle is generated hy turning the turtle through the
120 deqree exterior angle. The remaining instructions for this
path and for the other five paths are generated in this way,

producing six solution structures:

(SOLUTION1 (SOLUTION2 (SOLUTION3
(A B C A) (B C A B) (CBAC)
(DRAW 1 X) (DRAW 1 X) (DRAW 1 X)
(TURN 120) (TURN 120) (TURN 120)
(DRAW 1 X) (DRAW 1 X) (DRAW 1 X)
(TURN 120) (TURN 120) (TURN 120)
(DRAW 1 X)) (DRAW 1 X)) (DRAW 1 X))

(SOLUTION4 {SOLUTIONS (SOLUTIONG
(A C B A) {CBAC) (B AC B)
(DRAW 1 X) (DRAW 1 X) (DRAW 1 X)
(TURN 240) (TURN 240) (TURN 240)
(DRAW 1 X) (DRAW 1 X) (DRAW 1 X)
(TURN 240) (TURN 240) (TURN 240)
(DRAW 1 X)) (DRAW 1 X)) (DRAW 1 X))

4,2.4 Program Recognition

Once these solution structures have been generated, a

student”s nronosed program can be matched against these

v

75
structures. Since an exact match will occur only if the program
is correct, vartial matching techniques are used to permit and

identify differences hetween the provosed and correct solutions.

Recall the illustrated TRIANGLE task once again: the
student”s proposed program was:
DRAW 200
TURN 60
DRAW 200
This program must he matched against the six proposed solutions
shown above. The first step in this process is to build a
matching structure from this program; this is done by revlacing
each argqument of the nroaram”“s TURN statements with nosition
variahles, which can match anv angle value -- including the value
of incorrect turns -- and by inserting before and after each
program statement segment variables, which can match anv number
of statements and so can identifv statements the student has
incorrectly entered or omitted from his program. This procedure
produces the structure:
$S0 (DRAW 200) S$S1 (TURN ?ANGLE) $S2 (DRAW 200) $S3)
which must bhe matched against the pronosed solutions, perhaos
SOLUTION1:

(DRAW 1 X) (TURN 120) (DRAW 1 X) (TURN 120) (DRAW 1 X)

This match will succeed, as the result of four sevarate
steps. First, the program”s first DRAW matches the solution’s
first DRAW, qiving X -- the variable used to snecify the lenqgths

of line seaments -- a value of 200. Note that the matcher

attempts to match DRAWs wherever possible, rather than letting

76
DRAWs be matched by segment variables. As a result, the segment
variable $S0 receives no value. Second, the program”s TURN
matches the solution®s TURN, with the position variable ?VALUE
set to 120 (not 60, as in the student”s original program). Since
this successfully matched TURN immediately followed the
previously matched DRAW, $S1 receives no value. Third, the
program”s second DRAW matrhes the solution’s second DRAW; the
success of this match results in $S2 receiving no value. Fourth,
since the student”s program ends with this second DRAW, the
segment variable $S3 is matched to the remaining statements in

the solution -- (TURN 120) and (DRAW 1 X).

This technique is used to match the student’s program
against the proposed solutions. Each of these matches is then
given penalty points that determine the match’s "badness of fit";

the following ad hoc rules are used to award these points:

-Missing stevs: 1 point.
-Incorrect TURNs:

-If the sum of the angles is 180 degrees, .25
point. This rule will trap the common error of
specifying turns by their interior, and not
exterior, angles,

-If the oroposed and correct turns are both
clockwise (less than 180 degrees) or both
counterclockwise (hetween 180 and 360 degrees), .5
point.

-Otherwise, 1 point.

This method awards SOLUTION]1 ahove a score of 2.5 points: 2
points for the two missing steps, and .5 point for the TURN
statement: the exact anqgle of the TURN is wrong, but, like the

corresponding statement in the solution, it is in a clockwise

77
direction. Since SOLUTION1, SOLUTION?, and SOLUTION3 all use
clockwise turns, they all will receive scores of 2.5. Similarly,
since SOLUTION4, SOLU™ION 5, and SOLUTION6é are identical, bhut use
counterclockwise turns to solve the problem, they will receive
scores of 3 points. The incorrect TURN in these solutions

receives a penalty score of 1 point.

SOLUTION1, SOLUTION?, and SOLUTION3 are retained as
candidates for the correct interpretation of the student”s plan,
since they share the score that indicated the best
program-solution match. However, TURTLE cannot determine which
of these three solutions is correct without knowing which of the
vertices of the triangle was used by the student as the starting
noint of his proaram. This problem can be resolved only bv
asking the student which of the three hvpothesized paths
corresponds to his own:

Did you to intend to follow path C A B C? NO

Did you to intend to follow path B C A B? NO
Did you to intend to follow path A B C A? YES

In this way, the correct solution -- here, SOLUTIONl -~ can
be identified, and the plan corresponding to this solution can be

used to analyze and correct the errors in this program.

4,2.5 Program Decomposition

The simplicity of the TRIANGLE task makes the identification
of the student”s plan very straightforward. However, the
technique described ahove will be less successful as the tasks to

which it is applied hecome more complex and the number of

possihle paths through these fiqures increases. This problem can

78
he avoided by encouraging the student to decompose a large
problem into a set of smaller problems. Problem decomposition is
typically good programming style and would simplify TURTLE”s task

considerably. It would have to do the kinds of analyvsis shown

above only on simple figures such as triangles and squares, where

the number of viable paths is small. However, this
simplification comes at a price: TURTLE must be able to identify
how the student is decomposing the problem, so that proper
interpretations can be given to the program segments that carry

out the individual tasks.

TURTLE interprets a student”’s decomposition in much the same
way it determines the plan underlying an open coded program. Its
strategy is based on two assumptions about how people will solve
these problems:

-Peonle will decompose a problem that draws a complex

fiqure into a set of functions that draw reqular

figures such as triangles, rectangles, and circles.

-People will use mnemonic names for the functions that

carry out particular subparts of the problem: a

function that draws the square bhase of the well will

orobably be called BASE or SQUARE.

TURTLE exploits these assumptions in the following ways.

The first assumption implies that TURTLE need anticipate only
those decompositions made up of regular figures. Descriptions of
these orobable decompositions can then be included in a fiqure’s
task network; the expected decompositions for WELL include

structures such as the following (the full set of expecti d

decompositions can be found in WELL s task network in Figure 8):

79
EXPECTED-DECOMPOSITIONS :
(WELL -> ROOF POLE BASE
(VERTICES:
((POOF A B C D)
(POLE D E)
(BASE HE F G I)))
(TERMINATION-POINTS:
({ (ROOF ENDTNG-POINT) D)
((POLE STARTING-POINT) D)
((POLE ENDING-POINT) E)
((BASE STARTING-POINT) E)}))

This structure states that the WELL consists of a ROOF, a
POLE, and a BASE. The ROOF is Arawn by vertices A, B, C, and D
(see Fiqure 2), the POLE by vertices D and E, and the BASE by
vertices E, F, G, H, and I. The WELL can also be drawn as a TREE
and a BASE; a structure that represents this decomposition is
also included in WELL”s task network, TURTLE will use some
subset of these four names to internally describe how the student
has decomposed the WELL probhlem. All pregrams involving
decomposition will be Aetermined to he some collection of the

subfigures ROOF, POLE, BASE, and TREE.

The identification of students” decompositions would be
simple if students used only these four names for the subfigure
functions. This, of course, is not the case. However, since
people will probably give the subfiqure functions mnemonic names,
the number of probable function names is limited. Like the
figure decompositions, these names can be enumerated and included
in the fiqure”s task network; the names recognized by TURTLE for

the functions used to draw the possible subparts of WELL -- ROOF,

POLE, TREE, and BASE -- are structiared as follows:

80

POSSIBLE~-NAMES:

(ROOF IS-ALSO-CALLED (ROOF RO TRIANGLE TRI TR
TOP))

(POLE IS~-ALSO-CALLED (POLE PO LINE LI
LINE-SEGMENT VECT
MIDDLE MID))

(BASE IS-ALSO-CALLED (BASE BA SQUARE SQ SQU

BOTTOM BOT BO))
(TREE IS-ALSO-CALLED (TREE))

These structures are then used to identify the decomposition
used by a student. Recall the proposed program for the WELL task
(Section 4.1.2):

TOP

DRAW 200

BOX
The decomposition represented by this program is determined

by converting the program into a matching structure and comparing
it to the possible decompositions. The construction of this
matching process requires three steps:

-Each student function name that appears in the
POSSIBLE~NAMES structure is replaced by the concept
under which the function name is indexed. By this
rule, the student function name TOP is converted to
ROOF.

-Each function name that does not appear in the
PNSSIBLE-NAMES structure is converted to a position
variable: since BOX is not a name known to TURTLE, it
is revlaced by the position variable ?BOX.

~All strings of LOGO function calls are replaced by
segment variables: the DRAW 200 statement is replaced
by $80.

This conversion process produces the matching structure

(ROOF $S0 ?BOX)

which can he matched against the set of possible decompositions

of the WELL; as before, $S0 can match anv string of statements,

and ?BOX can match any single item, The best match comes from

R

81
the decomposition
(ROOF POLE BASE)

which leads to TURTLE”s intervoretation of the student”s program;

Let me see if I understand how you are going to solve

the WELL-TASK:

The function TOP draws the ROOF of the WELL-TASK.

The code: DRAW 200 draws the POLE of the WELL-TASK.

The function BOX draws the BASE of WELL-TASK.

Does that seem correct? YES

Note that the matching process will fail if the student
writes a program with function names that are recognized by
TURTLE, but that appear in an unexpected order, such as ROOF =->
BASE -> POLE. When given such a program, TURTLE will ask the
student to define the paths to he drawn by each of these
programs; if these completely describe the figure to be drawn, it
will proceed with this decomposition. TURTLE also allows the
student to Aefine new decompositions through a similar technique
of asking the student to define the maths taken by the new

functions.

4.2.6 Specifying Setup Orientations and Interfiqure Interfaces

The discussion thus far has concentrated on the generation
of programs that correctly dAraw the basic figures that make up
the tasks discussed here -- triangles, sguares, and the like.
There are two further tasks, however, that affect the correctness
of a LOGO program. These are concerned with the spatial

orientation of the program”s components.

As noved in the sample TRIANGLE session, the following code

generat~s a correct triangle:

L m e i mbe e -

PR Wy

82

DRAW 100
TURN 120
DRAW 100
TURN 120
DRAW 100

Since the student began this figure at vertex A, the above
code will produce a triangle that "points" to the right. Since
the turtle begins a session facing due north, the first DRAW also
goes north., Facing north is only one of manv possible
orientations, however, and is in fact incorrect. As shown in
Fiqure 2, the generated triangle must point upward. The program
needs an additional "setup" step at the beqginning of the program

~= TURN 30 -- to place the triangle in its proper orientation.

The figure”s orientation is specified in TRIANGLE”s task
network as its DESIRED-ORIENTATION:
(ORIENTATION A B SHOULD-BE 150)
This form states that the line segment from A to B should form a
150 degree angle with a horizontal line. Since the angles drawn
in turtle-graphics svstems are assumed to be rigid, the entire
orientation of an otherwise correct figure can be determined by

examining this one segment.

TURTLE determines the current orientation of this line
seqment by generating (via the figure”s task network CONNECTIONS)
a nath from the line segment backward to the starting point of
the figure, which the student identified when he verified
TURTLE”s interpretation of his plan. Since the line segment

drawn at the verv beginning of the figure will have an

-

83

11
orientation of zero degrees, and the angles between the line

segments that make up this path are also svpecified in the task
network, the actual orientation of AB can he computed. TURTLE
can then determine the size of the "setup" turn from the
difference bhetween the desired and actual orientations of AR;
here, that difference is 30 degrees. The student can then be

tutnrred on the construction of this interface.

The second orientation problem is caused by the
decomposition of a program into simpler tasks. As shown earlier,
the WELL problem can be logically subdivided into three subtasks
-~ a square, a line. and a triangle. BRoth of the functions and
the open coded line segment written by the student in the sample
session (Section 4.1.2) were individually correct; however, these
functions, when called one after another, nroduce the incorrect

drawing shown in Figure 3.

One error in this figure is that no setup orientation is
present; a more significant prohlem, however, is that the figures
are not interfaced properly: the POLE leaves the TOP and enters
the BOX at the wrong places., Although the student whose session
appears in Section 4.1.2 tried to define an interface between TOP
and the DRAW -- via the TURN 180 at the end of TOP -- additional
statements are needed between all three of these statements to
insure that the three fiqures are proverly positioned.

Unfortunately, no one set of interface statements exists that

11
unless the program began with a TURN statement, in which case
the first line segment will have an orientation corresponding to
the angle of the TURN,

Figure 3 The WELL Figure Drawn by the Student’s Initial
(and Incorrect) Decomposition

B

[.

e _a’l

85
might he identified and included in the fiqure’s task network as
were figure decompositions, because the student”s design of the
subfiqures will determine the steps required to interface these
figures. TURTLE must therefore wait until the student has
defined the starting and ending points of his subfiqures, and
then generate interface steps that are appropriate for these

functions.

When the interface bhetween two subfiqures is being
generated, TURTLE has determined how the student has decomposed
the task, and so knows which vertices are drawn by which
subfiqures. In the example above, TURTLE has determined that TOP
follows the path C -> A -> B -> C, the DRAW that creates the
WELL”s POLE moves from D to F, and BOX follows the path F -> G ->
I -> H. The interface steps bhetween TOP and the DRAW must
therefore move the turtle from C to D (from the ending point of
TOP to the starting point of the DRAW) and position it proverly
for the subsequent DRAW. Similarly, the interface steps between
the DRAW and BOX must move from E to F and position the turtle
properly for the drawing of the BOX. These paths can bhe
generated in much the same way as the paths that draw the
individual fiqures: by generating all sequences steps through the
fiqure, subject to the constraints on retraces described in
Section 4.2.3. TURTLE generates the paths C -=> D and C -> A -> B
-> D as possible interfaces between vertices C and D. These paths
are then converted to LOGO code, again in much the same way as
the original programs -- by using the specifications of line
segments and angles in the task’s figure-geometry to convert the

paths into an appropriate set of TURNs and DRAWs. Note that

86
TURTLE must refer to the steps immediately before and after the
interface steps to determine the initial and final TURNs. To
correctly turn onto the path from C to D, TURTLE must know the
orientation of the turtle upon reaching vertex C, which would
‘depend upon whether the student drew TOP along the path C -> A ->
B -> C or the path C -> B -> A -> C, Since, in this example,
TURTLE knows that the student followed the path C => A -> B -> C

in TOP, the following possible interface solutions result:

{SOLUTION1
(C D)
{TURN 180) ; turn through angle DCD
(MOVE 1 X) ; move over line segment CD
(TURN 90)) ; turn through angle CDE
(SOLUTION2
(C A BD)
(TURN 120) ; turn through angle ACD
(MOVE 2 X) ; move over line segment AC
(TURN 120) :; turn through angle CAB X
(MOVE 2 X) ; move over line segment AB f
(TURN 120) ; turn through angle ABD
(MOVE 1 X) ; move over line segment BD
(TURN 270)) ; turn through angle BDE

The student”s interface is matched against these two

possible solutions. As hefore, points are awarded that evaluate
the quality of the match (although a different system for
awarding point values is used here), and the solution with the

better (i.e., lower) score is selected. Here, SOLUTIONl is the

hetter soclution -- its TURN 180 matches the student”s interface 5
exactly, and its numher of steps is much closer to that of the
student’s plan -- and so will be used to debug the student’s

interface.

—m - — m—_‘,‘
1
|
‘
i
i
{

87
4.2.7 Program Annotation and Hint Generation
Once the plans underlying the student’s programs and 4
interfaces have been identified, TURTLE tries to identify any
errors that may be vresent in the program. This identification

is a two-step process, First, patterns are constructed that

describe the intent of each statement of the program and whether
that statement achieves that intent; second, these patterns are
matched against predefined structures that reveal the presence of

certain kinds of errors. .

Program errors are interpreted by matching the student’s
actual program to the program that, as hypothesized by TURTLE,
corresponds to the student”s pian. The result of this match is a
set of PROGRAM-STEP structures, one for each statement of the
correct program., These structures are of the form:

(PROGRAM-STEP number

step-representation
evaluation
intended-action)

A program-step’s NUMBER is simply the ordinal number of the
ster in the correct program. The STEP-REPRESENTATION consists of
an arbitrary and unique label for the steo, followed by the
correct statement itself. The EVALUATION states whether the stev
is CORRECT or INCORRECT in the student”’s program, or whether it
is MISSING. The INTENDED-ACTION is a general description of the
statement”s function -- such as (DRAW-LINE-SEGMENT B C) -~ which
is obtained from the EXAMPLE-SOLUTION entry in the figure“s task

network,

This analysis can be demonstrated via the sample session

88
with the TRIANGLE task in Section 4.1.1. The proposed and
correct orograms for this task were:
Analysis of your program:
Student Correct Commentary
Code Code
DRAW 200 DRAW 200 Correct mainstep to draw :
line segment AB 4
TURN 60 TURN 120 Incorrect interface to turn
through angle ABC
DRAW 200 DRAW 200 Correct mainstep to draw
line segment BC
TURN 120 Missing interface to turn
through angle BCA
DRAW 200 Missing mainstep to draw

line segment CA

The following program-step structures are built from these

correct and incorrect programs:

(PROGRAM-STEP 1
(T0014 DRAW 200)

CORRECT
{DRAW-LINE~-SEGMENT A B))

(PROGRAM-STEP 2
(TOO15 TURN 60)
INCORRECT
(SHOULD-BE TURN 120)
(TURN-THROUGH-ANGLE A B C))

{PROGRAM-~STEP 3
(T0016 DRAW 200)

CORRECT
(DRAW-LINE-~-SEGMENT B C))

(PROGRAM~STEP 4
(T0020 TURN 120)

MISSING-STEP
(TURN-THROUGH-ANGLE B C A))

(PROGRAM-STEP 5
(T0021 DRAW 200)

MISSING~STEP
{DRAW-LINE-SEGMENT C A))

i)

i v ———— e ——

89
In this analysis, program-steps 1 and 3 identify correct
statements (the two DRAWs). Step 3 is incorrect (the turn should

be 120 degrees), and steps 4 and 5 are missing.

When a student requests a hint, these vattern-step
structures are matched against a set of hint generation
structures (Table 9) that describe particular proaramming errors,
such as the omission of a step or a TURN through an incorrect
angle. Due to the constrained nature of the turtle-graphics
task, the number of possible errors is finite and relatively
small, and hint generation structures can be constructed for
each. The hint generation structures are examined sequentiallw,
and the first match found is used as the basis of a hint;
different hinting strategies can therefore bhe established hy

ordering these structures in different ways.

TURTLE”s hint generation rules are currently ordered so as
to first detect and offer help on steps missing from the
student’s program. The first hint generated in the sample
TRIANGLE task (Section 4.1.1) then focuses on the absence of the
final DRAW in the student”s program -- You are missing the line
segment from C to A. This hint is the result of the match
between the program-step structure corresponding to the missing
DRAW:

(PROGRAM-STEP 5
(T0021 DRAW 200)

MISSING-STEP
(DRAW-LINE-SEGMENT C A))

and the hint generation pattern:

Table 9:

TURTLE”s hint generation structures, in the form:
(error-condition => general-hint specific-hint)

Hints for missing steps:

l: (program-step ? (? draw ?value) missing-step ?intci i .

=>

("You are missing the line segment from "
(start-node ?intention) " to "
(end-node ?intention) ".")

("You are missing the step DRAW " ?value

" to draw the line segment from "
(start-node ?intention) " to "
{end-node ?intention) ".")

2: (program-step ? (? move ?value) missing-step ?intenti-n)

=>

("You are missing a retrace over the line segment from
(start-node ?intention) " to "
{end-node ?intention) ".")

("You are missing the step MOVE " ?value
" to retrace over the line segment from "
{start-node ?intention) " to "
(end-node ?intention) ".")

3: (and (is-current-task orientation-interface)

(program-step ? (? turn ?value) missing-step
?intention))

=>

("Another TURN command is necessary to orient "
TASK-NAME " correctly.")

("TURN " ?value " is the setup step necessary to orien- °©
TASK-NAME " correctly.")

4: (and (not (is-current-task orientation-interface))
(program-step ? (? turn ?value) missing-step
?intention))
=>

91
("You are missing the rotation to turn through angle "
(first-node ?intention} (second-node ?intention)
({third-node ?intention) ".")

("You are missing the step TURN " ?value ".")

Hints for extra steps:

1: (and (is-current-task orientation-interface)

(program-step ? (? turn ?value) extra-step))
=>

("Only one TURN command is needed to set up the
orientation correctly.")

("The step TURN " ?value " is unnecessarv.")

2: (and (not (is-current-task orientation-interface))
(program-step ? (? turn ?value) extra-step))
=>
("T™here is an extra TURN command in your interface.")
("The step TURN " ?value " is unnecessarvy.")
3: (and

(is-current-task orientation-interface)
(program-step ? (? move ?value) extra-step))

=>

({"MOVE commands are not needed in the orientation
interface.")

("The step MOVE " ?value " is unnecessarv.")

4: (and (not (is-current-task orientation-interface))

(program-step ? (? move ?value) extra-step))
=>

("There is an extra MOVE command in vour interface.")

("The step MOVE " ?value " is unnecessary.")

Hints for incorrect steps:

1: (and (is-current-task orientation-interface)

(is-missing-step turn)
(proqram-step ? ?step incorrect

3:

92

(should-be ? ?value) ?intention))

=>

("The setup rotation for " *TASK-NAME* " is incorrect.")

("TURN " ?value ", not TURN " (parameter ?step)
" should be the setup for " *TASK-NAME*)

(and (not (is-current-task orientation-interface))
(is-missing~step turn)
{program-step ? ?step incorrect

(should-be ? ?value) ?intention))
=>

("The rotation to turn through angle "

(first-node ?intention) (second-node ?intention)
(third-node ?intention) " is incorrect.")

("The rotation to turn through angle "

(first-node ?intention) (second-node ?intention)
(third-node ?intention) " should be TURN

" ?value " instead of TURN " (parameter ?sten)

".")

{and (is-missing-step move)
(program-step ? ?step incorrect
(should-be ? ?value) ?intention))

=>

("The retrace to move over line segment "

(start-node ?intention) (end-node ?intention)
" is incorrect.,")

{"The retrace to move over line segment "
(start-node ?intention) (end-node ?intention)

" should he MOVE " ?value " instead of MOVE "
{parameter ?step) ".")

" AD=A11% 020 TEXAS INSTRUMENTS INC DALLAS CENTRAL RESEARCH LABS F/¢ 5/9
INTELLIGENT TUTORING FOR PROGRAMMING TASKS: USING PLAN ANALYSIS==ETC{U)
MAR 82 J R MILLER: T P KEHLERs P R MICHAELIS NOOOI“-GO-C-OBI.
UNCLASSIFIED TI-08-82-010 ONR-TR-82-0818F

Yoo
END
oate
FUNED
-82
oTic

a3

(PROGRAM-STEP ?
(? DRAW ?VALUE)
MISSING-STEP
2 INTENTION)

Position variables are at the heart of this match: "?"
matches anything, "?VALUE" matches any numerical value (such as
the extent of a DRAW or a TURN), and "?INTENTION" matches anv
intended-action pattern, such as (DRAW-LINE-SEGMENT C A). Each
of the hint generation structures is associated with two hints,
one general and one-specific:

General hint:
("You are missing the line segment from *
(START-NODE ?INTENTION)
Htoll
(END-NODE ?INTENTION)
..l')
Specific hint:
("You are missing the step DRAW "
?VALUE
" to draw the line segment from "
(START-NODE ?INTENTION)
'to'
(END-NODE ?INTENTION)

.‘.'l')

Presenting a hint to the student first requires determining
whether éhe student should receive the general or the specific
hint. When a student first asks for a hint, TURTLE presents the
general hint; the specific hint is given in response to the
second reguest; no hints are given on subsequent requests. The
selected hint”“s pattern is then converted to the form the student
will actuallv see hy merqing the text in the selected hint’s
pattern with the values of the variables and the function calls

embedded within that pattern. 1In the present example, the

following forms would he created:

Frew

Sahca

s

General hint:
You are missing the line segment from C to A.

Specific hint:
' You are missing the step DRAW 200 to draw the

line segment from C to A.

These program-step structures are also used to control the
student”s correction of his program. After the student has
defined his program and TURTLE has carried out the analysis
described ahove, the student enters a debuqging phase, where he
is asked to identify and correct errors in his program (see the
trace in Section 4.1.1). When a student attempts to correct one
of these errors, a program-step structure is generated for the

modification. If this structure indicates the modification is

incorrect, TURTLE rejects the modification and tells him to try
again, Correct steps cannot be deleted, and incorrect steps --
typically TURNs with the wrong anqle specified -~ must be
respecified with the correct value. In this way, the student is
keot working toward a correct solution at all times, although at
the cost of preventing the student from experimenting with

different, possibly incorrect, versions of his program.

4.3 Areas of Puture Development

This research was focused on developing TURTLE”s ability to
identify the plans underlying students” LOGO programs and to
offer hints that address errors in these olans. This initial
effort has been limited in two wavs, each of which is an

important area for future research,

The first of these is to remove the restrictions on the

kinds of LOGO nroqgrams that can be written; in particular, to

95
allow programs with variable assignment, recursion, and
iteration. Fortunately, these components of LOGO can be
incorvorated into TURTLE’s existing system of task networks by
modifving and extending the CONNECTIONS section of a figure’s
task network. Consider the recursive function "BINARY-TREE
LENGTH DEPTH", which would draw a binary tree DEPTH levels deep,
with branches LENGTH units long. The task network for this
figure would state that, while some of the figure”s points are
connected by MOVEs and DRAWs, others are connected by (recursive)
calls to the BINARY-TREE function. 1In evaluating a student’s
program for this figure, TURTLE would have to determine that the
student”’s program called BINARY-TREE at the appropriate places,
and that the arquments defining the length and number of the
branches of the sub-tree were specified correctlv. This'process
would be no different from the way TURTLE currently determines
that, for instance, an angle is generated by a TURN of a
particular number of deqrees; such an extension is completely
compatible with TURTLE”s existing representational and analysis

by svnthesis systems.

Other extensions of TURTLE -- ones which reach beyond the
domain offi turtle graphics -- are vpossible. However, one should
not overlook the advantages of working within a highly
constrained domain such as turtle graphics. TURTLE is successful
largely bhecause of the detailed problem representation found in
the system”s task networks; these make possible the qeneration'of
a set of possible solutions, one of which should correspond to

the olan underlving the student’s program. The success of future

applications of TURTLE“s methodology will depend upon the

96

presence of a comparabhly detailed specification of the new

domain”s tasks.

The second area in need of development is the construction
of a reasonable pedagogical component for TURTLE, one that can
develop'a sound model of the student and use this model to
control the tutorial process. TURTLE currently lacks a
well-developed curriculum system such as that in BIP (Barr, et
al., 1976), in which the tasks presented to students are selected
on £he basis of thé skills the student has and has not yet
acquired; the task selection strategies used by BIP would provide
a sound beginning for this work. There is also much room for
improvement in TURTLE’s hinting capability. This project did not
address the questions of when a student should be interrupted
with a hint, and TURTLE has only primitive strategies for
determining the exact hint a student should receive: TURTLE
gives a general hint when a hint is first requested, and gives
more specific hints in response to further requests. The nature
of these problems is discussed in the summary; for now, it should
he noted that these insufficiencies can be corrected only by the
development of power ful student models, which will itself depend
upon careful research into the psychological issues underlying

the question of how people learn to program.

‘SBection 5

Summary
The results of this research are encouraging with respect to

the overall feasibility of constructing intg};igent tutorial

svstems. TURTLE can exploit the limited structure of (a modified

version of) LOGO and the programming problems nresented to
students to generate hints relevant to a student”’s oronosed
solution. We have thus far run only informal experiments with
TURTLE, which have not heen suitable for a detailed@ comparison of
TURTLE to a more traditional tutor such as BRIP. However, TURTLE,
like the human tutors in the BIP studies, can identify the errors
in a student”’s program and offer specific desigqn-level and
code-level hints relevant to these errors. In addition, TURTLE’s
use of menus and multiple windows corrects some of the human

engineering prohlems ohserved in the BRIP/HINT experiments.

As is often the case, however, the results of this research

may raise more questions than they answer. In varticular:

* What strateqies and knowledge structures are acquired by

people learning to proqram? The LOGO programs written by our

subjects typically went through two stages. First, the primary
figures (triangles, squares, etc.) were drawn correctly, but
were interfaced incorrectly; second, the interfaces among these
figures were gradually corrected. These studies suggest that
people have good strategies for drawing regular geometric

figures, but not for building the interfaces hetween figures.

Our subjects” major difficulty in drawing regular fiqures

98
was learning to specify the figures” angles by turning the turtle
through some number of degrees. Some of these constructions were
more difficult to learn than others: a 90 degree right turn is
made by "TURN 90", while a 90 degree left turn is made by 'TURNH
--270%; an equilateral triangle (with equal interior angles of 60
degrees) is generated by successively drawing the triangle’s
exterior 120 degree angles. These were not major problems for
our students, however. After working through the TRIANGLE task
in TURTLE, thev were almost always able to correctly build the
square and triangular components of the more complex figures
taught by TURTLE, such as WISHING-WELL and NAPOLEON. 1In
contrast, students had considerable difficulty building
inter faces that interconnect the reqular components of these
complex figures. Most of these interfaces were initially
incorrect, and most of the time spent by a student in a session
with TURTLE was devoted to correcting interfaces. It is clear
that, as people become more familiar with LOGO and turtle
graphics, they become more able to build correct interfaces, and
the study of the develovment of successful interface sttatégies
may offer some valuable insights into computer programming as a

_cognitive process.

What constitutes a good hint? When a tutor has decided that

a student needs a hint, that hint should
* address the immediate problem the student is having, and

* create in the student a strong conceptual understanding of

the problem’s solution, so that future hints will bhe unnecessary.

[—

99

These goals typically interfere with each other. The
student“s immediate problem can best he solved by simply giving
the student a set of program statements that will produce the
desired result; if the student simply copies the provided
solution, however, it is doubtful he will retain this advice for
use at a later time. At the other extreme, if the tutor gives a
vaque, general hint about how the problem might be solved, the
student will probahlv not acquire enough new information to allow
him to either solve the immediate problem or increase his
long-term understanding of the domain. A good tutorial system
should provide hints that address the specific gaps and fallacies
in the student”s understanding of the problem. These errors mav,
of course, occur at anv of the several levels of abstraction that
characterize the student”’s problem representation, such as the
multiple levels of desian and code structures encountered in the

programming tasks studied here.

This issue has received little study; it has been addressed
in the work by Collins and his colleagues on Socratic tutorial
svstems (Collins, Aiello, Warnock, & Miller, 1975; Stevens &
Collins, 1977). Most existing systems try to deal with this
oroblem by providing two levels of hints (see the discussions of
the OGOL tutor, BIP, and TURTLE): a general hint is given first
(in these proqgramming lanquage tutors, these are often related to
the design of the program or individual statements), followed by
a more specific hint (often showing program statements similar to
or the same as those that will solve the problem). This
technique only approximates a tutor that can target the

specificity of its hints to the needs of the student. Since such

o g

a system does not always offer hints that address the exact

nature of a student”s problem, it forces the student who needs
fairly spacific help on the form of particular statements to ask
for several hints, many of which may provide irrelevant or even'
confusing information. More significantly, students can become
aware of this aspect of the tutor vervvquickly (as did some of

the subijects in our informal experiments with TURTLE), and

ARAAL S e st e M s - Zekaa i -

realize that the exact answers to their problems can be obtained
simply by asking for several hints. Some students may then
deliberately ask for multiple hints in order to be told the
angswer to their problem, while others who view asking for hints
as admitting failure (see Section 3.4.4) may avoid hints
altogether for fear of being given a hint that reveals the exact
answer. Being able to generate a truly appropriate hint'for a
particular student in a particular task is thus a critical
component of a truly successful tutor, one that will depend upon
understanding the psychological components of the instructional
and learning experiences, and incorporating these components into

an accurate model of the student and the tutorial environmént.

101

References

Atwood, M. E., & Jeffries, R. Studies in plan construction:
Analysis of an extended protocol. Technical Report
SAI-80-028-DEN, Englewood, Colorado: Science Applications, 1Inc.,

1980.

Enda e arar S am e o

Barr, A., Beard M., & Atkinson, R. The computer as a

.

tutorial lahoratory. International Journal of Man-Machine

a4

Studies, 1976, 8, 567-596.

S

Brown, J. S., & Burton, R. Multiple representations of
knowledge for tutorial reasoning. 1In D. Bobrow & A, Collins

(Fds.), Representation and understanding. New York: Academic

Press, 1975,

Clancey, W. J., Bennett, J. S., & Cohen, P. R.
Applications-oriented AI research: Education, 1In A. Barr & E., A.

Feigenbaum (eds.), Handhook of artificial intelligence. Los

Altos: William Kaufmann, 1981.

Gentney, D. The FLOW tutor: A schema-based tutorial system.
Proceedings of the Fifth International Joint “onference on

Artificial Intelligence, 1977, 787-788.

Gentner, D., & Norman, D. A. The FLOW tutor: Schemas for i
tutoring. Technical Report 77-~02, La Jolla, California:
University of California at San Diego Center for Human

Information Processing, 1977.

Goldstein, I. P. Summary of MYCROFT: A system for

understanding simple picture programs. Artificial Intelligence,

SR e

T

e

Miller, M. L. A structured planning and debugging

environment for elementary programming. International Journal of

Man-Machine Studies, 1979, 11, 79-95.

Miller, M. L., & Goldstein, I. P. Structured planning and
Aebugging. Proceedings of the Fifth International Joint

Conference on Artificial Intelligence, 1977.
Papert, S. Mindstorms. New York, Basic Books, 1980.

Sleeman, D., & Brown, J. S. Intelligent tutoring systems.

New York: Academic Press, 1981.

Stevens, A, L., & Collins, A. The goal structure of a

socratic tutor. Technical Report 3518, Bolt Beranek and Newman,

Inc., 1977.

e e T . PO TRV WYy

A FTASAA P A I M 8 R A0 T Y B A DAY A T P ARSIV Ty P T Y AT ey

Appendix A:

TURTLE”s implementation

12
TURTLE is implemented in ASSERT, a CONNIVER-like

assertional database system implemented in MACLISP. It uses a

standard computer terminal for input and the display of TURTLE’s

Lo 3

program analvsis, and a high resolution color grapvhics terminal

(512 x 512 pixels) for the displav of LOGO figures.

During the task solution and assistance process, TURTLE uses
two graphics windows and one text window on the graphics
terminal. The graphics windows display the figure a correct
program should draw and the figure drawn by the student’s current
program. These two windows occupy the left half of the screen on
the graphics terminal. A text window on the right half of the
screen window displays program definitions and modifications,
hints, and tutorial text. TURTLE can be run without a graphics

terminal, although a diagram of the four tasks will be required

to follow TURTLE”s operation.

TURTLE”s response time varies, but is usually under 3
seconds for requests for hints, program edits, text disvlay, and
similar operations. Open coded solutions can take more time,
devending on the complexity of the figure to be analvzed (an open
coded solution for the tree task with one or zero retraces can be

recognized in 15 seconds or less).

12
ASSERT was designed by Mark Miller and William Murray, and
implemented by Murray.

oo s 2y

TI/Kehler March 25, 1082

Navy

Dr. Ed Aiken
Navy Personnel R4D Center
San Diego, CA 92152

Meryl S, Baker
NPRDC

Code P2nQ

San Diego, CA 92152

Dr. Robert Preaux
Code N-T711
MAVTRAEQUIPCEN
Crlando, FL 32812

CDR Mike furran

Office of Naval Research
£00 N. Quincy St.

Code 27C

Arlington, VA 22217

DR. PAT FEDERICC
NAVY PERSONNEL R&D CENTER
SAM DIEGC, CA 92152

Ir, John Ford
Navy Personnel R&D Center
San Diego, CA 92152

LT Steven D, Harris, MSq, USN
Codc A021

Maval Air Development Center
Warminster, Pennsylvania 18974

Or. Jim Hollan

Code 30

Navy Personnel R % D Center
San Diego, CA ©2152

Dr. MNorman J. Kerr

Chief of Maval Tecknicel Training
Mavol Air Station Memphis (75)
Millington, TN 2805y

Dr. Willjam L., Maloy

Principal Civilian Advisor for
Education and Training

Naval Training Command, Code 0NCA

Pensacola, FL 226507 .

Page 1

Navy

CAPT Richard L. Martin, USN
Prospective Commanding Officer

USS Carl Vinson (CVN-70)

Newport News Shipbuilding and Drydock Co

Newport News, VA 23607

Dr. James McBride
Navy Personnel R&D Center
San Diego, CA 92152

Dr William Montague
Navy Personnel R&D Center
San Diego, CA 92152

Ted M. I. Yellen

Techniecal Information Office, Code 201

NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

Technical Director
Navy Personnel RAD Center
San Diego, C& 92152

Commanding Officer

Naval Research Laboratory
Code 2627

Washington, DC 20390

Psychologist

ONR Branch Office
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

Office of Naval Research
Code 437

800 N. Quincy SStreet
Arlington, VA 22217

Personnel & Training Researcﬁ Programs
(Code U458)

Office of Naval Research

Arlington, VA 22217

TI/Kehler March 25, 1982 . ' LR ORI Pege ?

Navy ' Navy
1 Psychologist 1 Dr. Alfred F. Smode y
ONR Branch Office . Training Analysis & Evelustion Group
1030 East Green Street (TAEG) \
Pasadena, CA 91101 Dept. of the Navy

Orlando, FL 32813
1 Special Asst. for Education and

Training (OP-01E) 1 Dr. Richard Sorensen
Rm. 2705 Arlington Annex Navy Personnel R&D Center .)
Washington, DC 20370 San Diego, CA 92152 1
1 Office of the Chief of Naval Operations 1 Roger Weissinger-Baylon
Research Development & Studies Branch Department of Administrative Sciences X
(OP-115) Naval Postgraduate Sc..Hol '
Washington, DC 20350 Monterey, CA 93940 ¢
1 LT Frank C. Petho, MSC, USN (Ph.D) 1 Dr. Robert Wisher i
Selection and Training Research Division Code 309 .
Human Performance Sciences Dept. Navy Personnel R&D Center
i Naval Aerospace Medical Research Laborat San Diego, CA 92152

Pensacola, FL 32508
1 Mr John H. Wolfe

1 Dr. Gary Poock Code P310 .
Operations Research Department U. S. Navy Personnel Research and
Code 55PK Development Center Z
Naval Postgraduate School San Diego, CA 92152 !

Monterey, CA 93940 i

1 Roger W. Remington, Ph.D
Code LS2
NAMRL
Pensaceola, FL 32508

s 1 Dr. Bernard Rimland (02B)
Navy Personnel R&D Center
i San Diego, CA 92152

1 Dr. VWorth Scanland, Director .
Research, Development, Test & Evaluation
N-5

i Naval Education and Training Command

NAS, Pensacola, FL 32508

-a

Dr. Robert G. Smith

Office of Chief of Naval Operations
OP-987H

Washington, DC 20350

Ti/Kenier March 25, 1982 Page 3 1

Army Army

1 Technical Director 4 1 Dr. Frederick Steinheiser

U. S. Army Research Institute for the Dept. of Navy
Behavioral and Social Sciences . Chief of Naval Operations
5001 Eisenhower Avenue OP-113 :
Alexandria, VA 22333 Washington, DC 20350
1 Mr. James Baker 1 Dr. Joseph Ward

Systems Manning Technical Area) U.S. Army Research Institute
Army Research Institute 5001 Eisenhower Avenue

5001 Eisenhower Ave, Alexandria, VA 22333
Mexendria, VA 223332 :

1 Dr. Beatrice J. Farr _ .
U, S. Army Research Institute
5001 Fisenhower Avenue
Alexandria, VA 22233

1 DR. FRANK J, HARRTS
U.S. ARMY RESEARCH IMSTITUTE
5001 ETSENHOWER AVENUE
ALEXANDRIA, VA 22273

1 Dr. Michael Kaplzn
U.S. ARMY RESEARCH INSTITUTE
5001 EISEMHOWER AVENUE
ALEXANDRIA, VA 22332

1 Dr. Milton S. Katz
Training Technical Area 4
U.S. Army Research Institute
5001 Fisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
Attn: PERI-DK :
Army Research Institute
5001 Eisenhower Avenue
Mexandria, VA 22333

1 Dr. Robert Sasmor
U. S. Army Research Institute for the i
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22233

RO

TI/Kehler March 25, 1982

Air Force

1 U.S. Air Force Office of Scientific
Research .
Life Sciences Directorate, NL
Bolling Air Force Base
Washington, DC 20332

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Rolling AFP, DC 20232

2 3700 TCHTW/TTGH Stop 32
Sheppard AFB, TX 76211

1

Page 4

Marines

H. William Greenup
Education Advisor (EO031)
Education Center, MCDEC
Quantico, VA 22134

Special Assistant for Marine
Corps Matters

Code 100M

Office of Naval Research

800 N. Quincy St.

Arlington, VA 22217

DR. A.L. SLAFKOSKY

SCTENTIFIC ADVISOR (CODE RD-1)
HO, U.S. MARINE CORPS
WASHTNGTON, DC 20280

11/nenier rarcn ¢, 1982

CoastGuard

1 Chief, Psychological Reserch Branch
U. S. Coast Guaerd (G-P-1/2/TP42)
Washington, DC 20593

12

Page >

Other DoD

Defense Technical Information Center
Cameron Station, Bldg S

Alexandria, VA ?231&

Attn: TC

Military Assistant for Training end
Personnel Technology

Office of the Under Secretary of Defense
for Research & Engineering

Room 3D129, The Pentagon

. Washington, DC 20201

DARPA
1800 Wilson Blvd,
Arlington, VA 22209

|

.

TI/Kehler March 25, 1982

Civil Govt

Dr. Susan Chipman

Learning end Development
National Institute of Education
1200 19th Street NW
Washington, DC 20208

Dr, John Mays

National Institute of Education
1200 19th Street NW

Washington, DC 20208

William J. McLaurin
66610 Howie Court
Camp Springs, MD 20031

Dr. Arthur Melmed

National Intitute of Education
1200 10th Street NW
Washington, DC 20208

Dr. Andrew R, Molner
Science Education Dev.

and Research
National Science Foundation
Washington, DC 20550

Dr. Josz2ph Psotka

" National Tnstitute of Education
1200 19th St. NW
Washington,DC 2020%

Dr. Frank Withrow

U. S. ¢Cffice of Education
400 Maryland Pve. SW
Washington, DC 20202

Dr. Joseph L. Young, Director
Memory & Cognitive Processes
Nationnal Science Foundation
Washington, DC 20550

Non Govt

’

Dr. John R. Anderson
Department of Psychology
Carnegie Mellon Upiversity
Pittsburgh, PA 15213

Anderson, Thomas H., Ph.D.
Center for the Study of Reading
174 Children's Research Center
51 Gerty Drive

. Champiagn, TL 61820

Dr. John Annett
Department of Psychology
University of Warwick
Coventry CV4 TAL

ENGLAND

1 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices

Canberra ACT 2600, Australia

Dr. Alan Baddeley

Medical Research Council
Applied Psychology Unit

15 Chaucer Road

Cambridge CB2 2EF

ENGLAND

Dr, Patricia Baggett
Department of Psychology
University of Colorado
Poulder, CO 80309

Mr Avron Barr

Department of Computer Science
Stanford University

Stanford, CA 04305

Liaison Scientists

Office of Navel Research,
Branch Office , London

Box 29 FPO New York 09510

Dr. Lyle Bourne
Department of Psychology
University of Coloredo
Boulder, CO R0D309

TI/Kehler March 25, 1982

Non Govt

1 Dr. John S. Brown
XEROX Palo Alto Research Center
3323 Coyote Road
Palo Alto, CA 9Qu304

1 Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305

1 DR. C, VICTOR BUNDERSON
WICAT INC.
UNTVERSITY PLAZA, SUITE 10
1160 SO. STATE ST.
OREM, UT 84057

1 Dr. Pat Carpenter
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. John B, Carroll
Psychometric Lab
Univ. of No. Carolina
Davie Hall 013A
Chapel Hill, NC 27514

1 Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. Micheline Chi
Learning R & D Center
University of Pittsburgh
2939 O'Hara Street
Pittsburgh, PA 15213

1 Dr. Allan M. Collins
Polt Beranck & Mewman, Tnec.
5C Moulton Street
Cambridge, Ma 02138

1 Dr. Lynn A. Cooper
LRDC
University of Pittsburgh
3939 N'Hara Street
Pittsburgh, PA 15213

‘LCOL J. C. Eggenberger

Page 7

Non Govt

Dr. Meredith P, Crawford

American Psychological Association
1200 17th Street, N.W.

Washington, DC 20026

Dr. Kenneth B, Cross
Anacapa Sciences, Inc.
P.0. Drawer Q

Santa Barbara, CA 92102

DIRECTORATE OF PERSONNEL APPLTED RESEARC
NATIONAL DEFENCE HQ

101 COLONEL BY DRIVE

OTTAWA, CANADA K1A (K2

Dr. Ed Feigenbaum. ﬁ
Department of Computer Science
Stanford University

Stanford, CA 94305

Dr. Richard L. Ferguson

The American College Testing Program
P.0. Box 168

Jowa City, JA 52240

Mr. Wallace Feurzeig

Bolt Beranek % Newman, Inc.
50 Moulton St.

Cambridge, MA 02138

Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

Univ. Prof. Dr. Gerhard Fischer
Liebiggasse 5/3

A 1010 Vienna

AUSTRIA

DR. JOHN D. FOLLEY JR,
APPLIED SCTIENCES ASSOCIATES INC
VALENCTIA, PA 16059

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

TY/Kehler March 25, 1982

Non Govt

1 'Dr. Alinda Friedman
Department of Psychology
University of Alberta
Edmonton, Alberta
CANADA T6G 2E9

1 DR. ROBERT GLASER
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET '
PITTSBURGH, PA 15213

1 Dr. Marvin D. Glock
: 217 Stone Hall
Cornell University
Ithaca, NY 14853

1 Dr. Daniel Gopher
Industrial & Management Engineering
Technion-Tsrael Institute of Technology
Haifa ’
ISRAEL

1 DR. JAMES G. GREENO
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA = 15213

1 Dr. Ron Hambleton
School of Education
University of Massechusetts
Amherst, MA 01002

1 Dr, Harold Hawkins
Department of Psychology
University of Oregon
Eugene OR 97403

1 Dr. Barbara Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Dr. Frederick Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 9040¢

Page 8

Non Govt

Dr. James R. Hoffman
Department of Psychology
University of Delaware
Newark, DE 19711

Dr. Kristina Hooper
Clerk Kerr Hall
University of California
Santa Cruz, CA 95060

" Glenda Greenwald, Ed.

"Human Intelligence Newsletter"”
P. 0. Box 1162
Birmingham, MI 48012

Dr. Earl Hunt

Dept. of Psychology
University of Washington
Seattle, WA 98105

Dr. Ed Hutchins
Navy Personnel R&D Center
San Diego, CA 92152

DR. KAY INABA
21116 VANOWEN ST
CANOGA PARK, CA 91302

Dr. Steven W, Keele
Dept. of Psychology
University of Oregon
Eugene, OR 97403

Dr. Walter Kintsch
Department. of Psychology
University of Colorado
Boulder, CO 80302

Dr. David Kieras
Department of Psychology
University of Arizona
Tuscon, AZ 85721

Dr. Stephen Kosslyn
Harvard University
Department of Psychology
32 Kirkland Street
Cambridge, MA 02138

Gaxa

TI/Kehler

March 25, 1982

Non Govt

Dr. Marcy Lansman

Department of Psychology, NI 25
University of Washington
Seattle, WA . 98195

Dr. Jill Larkin

Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Michael Levine

Department of Educational Psychology
210 Education Bldg.

University of Illinois

Champaign, IL 61801

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Erik McWillioms

Science Education Dev, and Research
Mational Science Foundation
Washington, DC 20550

Dr. Mark Miller

T1 Computer Science Lab

C/0 2824 Winterplace Circle
Plano, TX 75075

Dr. Allen Munro

Behavioral Technology Laboratories
1845 Elena Ave,, Fourth Floor
Redondo Beach, CA 90277

Dr. Donald A Norman

Dept. of Psychology C-009
Univ, of California, San Diego
La Jolla, CA 92093

Son Govt
/

Committee on Human Factors
JH 811 ')
2101 Constitution Ave., MWW
Washington, DC 20418

Dr. Jesse Orlansky
Institute for Defense Analyses
400 Army Navy Drive
Arlington, VA 22202

Dr. Seymour A. Papert

Massachusetts Institute of Technology
Artificial Intelligence Labd

545 Technology Square

Cambridge, MA 02129

Dr. James A, Paulson
Portland State University
P.0. Box 751

Portland, OR 97207

Dr. James W, Pellegrino

University of California,
Santa Barbara

Dept. of Psychology

Santa Barabara, CA 93106

MR. LUTGI PETRULLO
2431 N, EDGEWOOD STREET
ARLINGTON, VA 22207

Dr. Martha Polson
Department of Psychology
Campus Box 34¢
University of Colorado
Boulder, CO 80300

DR. PETER POLSON

DEPT. OF PSYCHOLOGY
UNIVERSITY NF COLORADO
BOULDER, CO 803090

Dr. Steven E. Poltrock
Department of Psychology
University of Denver
Denver ,CO 80208

TI/Kehler March 25, 1982

Non Govt

MINRAT M. L. RAUCH

PIT & _
BUNDESMINISTERIUM DER VERTEIDIGUNG
POSTFACH 1328

D-53 BONN 1, GERMANY

Dr. Fred Reif

SESAME

c/o0 Physics Department
University of California
Berkely, .CA 94720

Dr. Lauren Resnick

LRDC

University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Mzry Riley

LRDC

University of Pittsburgh
2929 O'Hara Street
Pittsburgh, PA 15212

Dr. Andrew M, Rose

American Tnstitutes for Research
1055 Thomas Jefferson St, NW
Washington, DC 20007

Dr. Ernst Z. Rothkopf
Bel) Laboratories

6CO Mountain Avenue
Murray Hill, NJ 07974

Dr. David Rumelhart

Center for Human Information Processing
Univ. of California, San Diego

La Jolla, CA 92003

DR, WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY
UNTVERSTTY OF TLLINOTS
CHAMPAIGN, TL 61820

Dr. Alan Schoenfeld
Department. of Mathematics
Hamilton College

Clinton, NY 12323

Page 10

Non Govt

DR, ROBERT J. SEIDEL

INSTRUCTTONAL TECHNOLOGY GROUP
HUMRRO

300 N. WASHINGTON ‘ST,

ALEXANDRIA, VA 22314

Committee on Cognitive Research
% Dr. Lonnie R. Sherrod

Social Science Research Council
605 Third Avenue

‘New York, NY 10016

Robert S, Siegler
Associate Professor
Carnegie-Mellon liniversity
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

DPr. Edward E. Smith

Bolt Beranek & Newman, Tnc,
50 Moulton Street
Cambridge, MA 02138

Dr, Robert Smith

Department of Computer Science
Rutgers University '
New Brunswick, NJ 08903

Dr. Richard Snow

School of Education
Stenford University
Stanford, CA 94305

Dr. Robert Sternberg
Dept. of Psychology
Yale University

Box 11A, Yale Station
New Haven, CT 06620

DR. ALBERT STEVENS

BOLT BERANEK & NEWMAN, INC,
50 MOULTON STREET
CAMBRIDGE, MA 02138

David E. Stone, Ph.D.
Hazeltine Corporation
7680 01d Springhouse Road
McLean, VA 22102

— e g

TY/Kehler March 25, 1982 Page 11

Non Govt Non Govt
1 DR. PATRICK SUPPES 1 Dr. Keith T. Wescourt
TNSTITUTE FOR MATHEMATICAL STUDIES IN Information Sciences Dept.
THE SOCJAL SCIENCES The Rand Corporation
STANFORD UNIVERSITY 1700 Main St.

STANFORD, CA 9H305 Santa Monica, CA 90U40€

1 Dr. Kikumi Tatsuoka
Computer Rased Fducation Research
Laboratory :
252 Engineering Research Laboratory
University of Tllinois
Urbana, IL 61201

1 Dr. John Thomas
IBM Thomas J. Watson Research. Center
P.0. Box 218
Yorktown Heights, NY 10508

1 DR, PERRY THORMDYKE
THE RAND CORPORATTON
1700 MATN STREET
SANTA MONTCA, CA 90406

1 Dr. Douglas Towne
Univ. of So. California
Pehavioral Technology Labs
1345 S. Elena Ave,
Redondo Beach, CA 90277

1 Dr, J. Uhlaner
Perceptronics, Tnec.
6271 Variel Avenue
Woodland Hills, CA 91364

1 Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, TL £A0201

1 Dr. David J., Weiss
NAEO Flliott Hall
University of Minnesota
75 F. River Road
Minneapolis, MM 55u55

1 DR. GERSHON WFLTMAN
) PFRCEPTRONICS TNC.
€271 VARTEL AVE,
WONDLAND HTLLS, CA 91367

